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. Some context: facing winter energy deficits

Electricity _ N
The challenge of the Swiss energy transition:
\ » 40 % of current electricity should come from
_ photovoltaic (PV) and wind energy
m Storage hydropower

2
m Run-of-river

» This requires the installation of either:

Nuclear
Com thermal - 115 km? of PV panels (18% efficiency)
currently installed: 13 km?
Energy All south oriented Swiss roofs
‘ or 27000 soccer fields
or 75600x EPFL solar park
- 6000 wind turbines (3 MW each)
‘\ currently installed : 42

m Fuel for transportation 12x the largest US wind farm
m Fuel (other usage) h

Petro_'f—‘“m gases Effort x10 under current energy consumption and
Electicity 100% electrification scenario

m Other

J
Source: Swiss Federal Office of Energy
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. Some context: facing winter energy deficits
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. Some context: facing winter energy deficits
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. Some context: facing winter energy deficits
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Il. Wind power: an ideal complement to hydropower

Wind power capacity factor (%)
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an ideal complement to hydropower

Wind power

Wind power capacity factor (%)

Dujardin et al. 2021
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Il. Wind power: an ideal complement to hydropower

Spilled water (energy): 0.00%
Max negative total volume: 0.00 mio m3
Storage Hydro production: 3.09 GW

Non modeled stor.Hydro production: 0.06 GW
Pump consumption: 0.00 GW

Run-Of-River production: 1.11 GW

Solar production: 0.00 GW

Wind production: 1.44 GW

Geoth production: 0.00 GW

Surplus production (free disp.gen): 0.00 GW
Surplus potential: 0.00 GW

Curtailement: 0.00%

Swiss demand: 6.70 GW

Swiss residual demand: 4.09 GW

Portion of residual demand: 61.07%

Import: 1.00 GW

Export: 0.00 GW

Net import: 1.00 GW

Swiss production (with pumping): 5.70 GW
Losses: 0.00 GW

Losses portion of demand: 0.00%
LineLosses: 0.00 GW
EnergyStoredDiff: -3.22 GW
TransmittedEnergy: 24.41 GW

A
gy

WSL SLE
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Il. Wind power: an ideal complement to hydropower
Winter deficit
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Il. Wind power: an ideal complement to hydropower
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lll. Wind-Topo: a deep learning approach to wind downscaling PO

(ma.s.l) N 2250
Meas.stations [321] [ ]<250 [ 2500

e Exposed [69] (] 500 [] 2750
© Sheltered [86] (1750 [] 3000

e Other[166] 11000 [ 13250
(O Validation stations [60] |3 1250 [ 1>3500
i ! Input domains (examples) 11500
[ Testarea 1750

Predictands de i

/

Stations : EFE

.« IMIS g

» SwissMetNet ¥

Variables:

s u

Y

Characteristics:

« 7-10 m.a.gl ,

* Hourly o

Period: i I

+ Train: 2 years i

+ Test: 3 year

0 20 km
I
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lll. Wind-Topo: a deep learning approach to wind downscaling

COSMO-1 data
(low-res predictor)

Resolution:

* 19 x 19 pixels
* 1.113 km / pixel
e 21 x21km

Variables (# layers):
* Zeosmo (1)

* Ugosmo (D)

* Veosmo (D)

* W (5)"

* AO/Ah (4) **

* s (1)

Period:
e Same times as
measurements

* L R—
W' = Weosmo — W(from u, v, terrain)

** AO / Ah: gradient of potential T°

between 2 layers

EPFL @ 3k €2

19x19
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lll. Wind-Topo: a deep learning approach to wind downscaling

Topographic data
(high-res predictor)

Resolution:

* 399 x 399 pixels
* 53 m/ pixel

e 21 x21km

Variables (# layers):
* Ziopo (1)

+ slope (1)

» aspect (1)

399x399
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lll. Wind-Topo: a deep learning approach to wind downscaling

Topographic data
(high-res predictor)

Resolution:

* 399 x 399 pixels
* 53 m/ pixel

e 21 x21km

Variables (# layers):
* Ziopo (1)

* slope (1)

» aspect (1)

Ao

WSL ASsoie

399x399
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lll. Wind-Topo: a deep learning approach to wind downscaling

Topographic data
(high-res predictor)

Resolution:

* 399 x 399 pixels
* 53 m/ pixel

e 21 x21km

Variables (# layers):
* Ziopo (1)

+ slope (1)

» aspect (1)

EPFL @ 3G

WSL SLE

g &

399x399
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lll. Wind-Topo: a deep learning approach to wind downscaling
1.00

Computation of
time-dependent
topographic
descriptors

0.75

0.50

Needs:

* Ucosmos Vcosmo
» slope

* aspect

10.25

Outputs:
« E+ (1)
- E-(1)
* AUgn (1)
* AVin (1)

-0.00

|
©
N
Ul

Exposure (E, + E)) (DN)

=0.50

E, = max(sin(a),0)
E_=min(sin(a),0)
where, _0 7 5

{a =arctan(tan(slope)cos(d))

6 =arctan2(—v.,—u.) —aspect

—1.00

Dujardin and Lehning - 2022 - QJRMS

EPFL @ 34 &%
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lll. Wind-Topo: a deep learning approach to wind downscaling

Computation of
time-dependent
topographic
descriptors

Needs:

*  Ucosmos VYcosmo
» slope
* aspect

Outputs:
« E+ (1)
« E-(1)
O Autan (1)
* AVin (1)

AU, (M/s)

Dujardin and Lehning - 2022 - QJRMS

Auran = (cos(f) — 1 uc—sin(f)v,
{Aum,, =sin(fuc+ (cos(f)—1) v,
where,
{ﬁ = (g— 16 )sign(®)sin(slope)

with, 6 €] — m, 7|
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lll. Wind-Topo: a deep learning approach to wind downscaling

[Example of exposure] Example of deflection ]
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Ml. ¥ a deep learning approac scaling
© g — Trained on 2.3 million examples
5 . = (900 GB of data)
i} Uc EEmEs: <
g v = O/o Multidimensional
8 ol - 56 convolutional neural networks
w I
© A0/ Ah i R
s 5 _
Zcosmo mE
Pointwise data
< [T
E
°
O
2
o
o
8') Ztopo
o
L

399x399 > 2x77X77 E.Ug EUg ,E+Vg, EVg ;AU AVian

E PF L @ #__]5 From slope, aspect, uc, v,  rds bettel Foveal blur 1 power potentials in the Alps
WSL SLE

to 6 descriptors
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lll. Wind-Topo: a deep learning approach to wind downscaling

6.75 million parameters for u
(same for v)
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lll. Wind-Topo: a deep learning approach to wind downscaling

Mean absolute ——u
errors = ¥
— — vel
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Training set:

261 stations

01 Oct. 2015 - 01 Oct. 2016

and

01 Oct. 2017 — 01 Oct. 2018
Test set 3:

60 stations

01 Oct. 2016 — 01 Oct. 2017

.. - Dujardin and Lehning - 2022 - QJRMS

1 epoch = 1 pass
through the entire
training set
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lll. Wind-Topo: a deep learning approach to wind downscaling

EPFL @ 3%

MAE (m/s) of Wind-Topo

| Mean Absolute Error (MAE) ]

3.0 A1

2.5 1

N
o
1

=
(S,)
1

1.0 4

0.5 A

Exposed training station
Training period

Test period

Sheltered training station
Training period

Test period

Other training station
Training period

Test period

Exposed test station
Training period

Test period

Sheltered test station
Training period

Test period

Other test station
Training period

Test period

©3 |00 @@ o« oo
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lll. Wind-Topo: a deep learning approach to wind downscaling

COSMO-1
at 20:00 23 Oct. 2016

b1 1S Jéréme Dujardin - 2022/03/30 - Towards better estimates of wind power potentials in the Alps

Wind speed (m/s)
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lll. Wind-Topo: a deep learning approach to wind downscaling

Wind-Topo
at 20:00 23 Oct. 2016

300 x 300 pixels >155 sec on 1 GPU (RTX2080Ti)

) 7“‘““ v

&

K
-
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lll. Wind-Topo: a deep learning approach to wind downscaling

1 year hourly

Jéréme Dujardin - 2022/03/30 - Towards better estimates of wind power potentials in the Alps
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lll. Wind-Topo: a deep learning approach to wind downscaling

1 year hourly
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IV. Conclusion and outlook

Wind energy is the best complement to hydropower

Wind-Topo is a promising step towards better estimates I:>

Wind turbines in the Alps are potentially very profitable (high capacity factor)
and can be integrated near current infrastructure (hydropower, grid)

But, large uncertainties in complex terrain, except for a few monitored locations.

High resolution
Long time series
Reduced errors
Better distributions

/

LT L
71 TS
SLF

.

* Need for a refined map of potential locations
« From near-surface high-resolution wind to wind power

« Economic case?
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Wind-Topo: Downscaling near-surface wind fields to
high-resolution topography in highly complex terrain with

deep learning
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Abstract
Predicting wind flow in highly complex terrain like the Alps is a challenge for
all models. When physical p need to be lved in a spatially explicit

manner, grids with high horizontal resolution of a few hundred meters are
often required and drastically limit, in many cases, the extent and duration of
the simulations. Many surface process models, like the simulation of hetero-

Sorrespondence geneous SNow cover across a season, however, need long time series on large
. Dujardin, Institute for Snow and domains as inputs. Statistical downscaling can provide the required data, but
wvalanche Research (SLF), Swiss Federal no model can reach the desired resolutions effectively and provide temporally
nstitute for Forest, Snow and Landscape . . . .
tesearch (WSL), Davos 7260, Switzerland. resolved wind speed and direction on highly complex topography. The assess-
imail: jerome.dujardin@slf.ch ment of the potential for wind energy in the Alps, a promising player in the
‘unding information energy transition, is an example where the current shortcomings cause strong
nnosuisse through the Swiss Competence limitations. We present “Wind-Topo”, a novel approach based on deep learning
;‘::Cfl‘:; Energy Research, Supply of that discovers some of the interactions between high-resolution topography and
coarser-resolution states of the phere to generate near-surface wind fields
with a 50-m resolution. In our test case, we use a large number of measurement
stations in Switzerland to train the model and an operational weather predic-
tion model (COSMO-1) as predictor. Wind-Topo employs a custom architecture
that analyses the state of the atmosphere on various scales and associates it
with high-resolution topography. A dedicated loss function leads to good scoring
metrics as well as accurate wind-speed distributions at 60 independent sta-
tions used for a thorough validation. 50-m resolution wind fields are generated
efficiently and exhibit several expected orographic effects like ridge accelera-
tion, sheltering, and deflection. Furthermore, the bias and mean absolute error
from COSMO-1 at the alpine validation stations, which are 0.72 and 1.77 m-s~*
respectively, are reduced to —0.07 and 1.21 m-s~*.
KEYWORDS
complex terrain, convolutional neural network, deep learning, downscaling, orographic effect, wind
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COMPLEXTERRAIN | CONVOLUTIONAL NEURAL NETWORKS | DOWNSCAUNG | HIGHRESOLUTION | MACHINE LEARNING | METEOROLOGY | SURFACEWINDS | TOPOGRAPHY
igs Py - i ¥ e AN
Py Description Data and resources b']
Wind-Topo is a statistical downscaling model for near surface wind fields especially suited for
> highly complex terrain. Wind-Topo_v0.1.0

Itis based on deep leaming and was trained (calibrated) using the hourly wind speed and
direction from 261 automatic measurement stations (IMIS and SwissMetNet) located in
Switzerland. The periods 15t October 2015 to 15t October 2016 and 1t October 2017 to 15t
October 2018 were used for training, The model was validated using 60 other stations on the
period 15t October 2016 to 15t October 2017. Wind-Topo was trained using COSMO-1 data and a
53-meter Digital Elevation Model as input.

This dataset provides all the necessary code to u . use and incorpy d-Topoina
new downscaling scheme. Specifically, the dataset contains the architecture of Wind-Topo and
its optimized parameters, as well as a python script to downscale uniform wind fields with a
prescribed vertical profile for any given 53-meter DEM

Accompanies the publication “Wind-Topo: Dow. Location
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Related Publications

« "Wind-Topo: Downscaling near-surface wind fields to high-resolution topography in highly
complex terrain with deep leaming" Dujardin and Lehning. Quarterly Journal of the Royal
Meteorological Society. 2022. https.//doi.0rg/10.1002/0j.4265
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https://gitlabext.wsl.ch/dujardin/wind-topo
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Wind-Topo is a statistical downscaling model for near surface wind fields especially suited for highly complex terrain. It is based on
deep learning and was trained with data from 261 stations. Dujardin and Lehning 2022 "Wind-Topo: Downscaling.."

@ version of Envidat and Wind-Topo publication (Dujardin and Lehning, 2022, QJRMS) 134975a8 | [
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