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The growth in the (hybrid) electric vehicles market is due to both the need for
sustainable mobility and pollution reduction.

Hybrid and Electric Vehicles
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HEVs are characterized by the fact that they combine an electric motor with an
internal combustion engine.

Why Hybrid Electric Vehicles?
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Sciarretta et al., 2007
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In parralel to HEVs, a huge effort of the research community has also been
devoted to the development of autonomous vehicles.

Autonomous Vehicles
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By removing the need for a human driver is expected to reduce both the traffic
and the frequency of car accidents.

Guanetti et al., 2018
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An autonomous vehicle requires to be connected with the surrounding
environment (other vehicles, traffic lights, etc) in order to avoid collisions.

Connected Autonomous Vehicles (CAVs)
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Hierarchical Control for Autonomous HEVs
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The control of autonomous HEVs is organized in a hierarchical control scheme
and involves different tasks.
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Route Planner

The route planner finds the shortest path
between the current position and the
destination.
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It finds the velocity profile along a specific path which deals with the trade-off 
between travel time and energy efficiency. 

Velocity Planner 
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Velocity Control

The velocity control tracks the reference velocity while ensuring safety and
avoiding collisions by designing the wheel torque.
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Powertrain Control

The powertrain control splits the demanded power between the electric motor
and the engine.
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Liu et al., 2008
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Goal of the Work

12

In this presentation we focus on the design of an ecological velocity planning for
autonomous HEVs along a given path.

Previous works in this field
rely on model-based
approaches

• Dib et al., 2014

• Sciarretta et al., 2015

• Han et al., 2018
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Model-based ecological velocity planning usually exhibits the following issues:

Issues of model-based eco-driving
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• high computational cost

• curse of dimensionality

• need for an accurate model



The solution can be the use of model-free reinforcement learning for online
velocity planning, in order to minimize travel time and fuel consumption.

RL-Based Velocity Planner 
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RL has already been exploited in the context of power management for HEVs.

RL-Based Velocity Planner 
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However, its use for optimal eco-
driving constitutes a source of novelty.

Liu and Murphey, 2019
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RL alone is not suitable for safety-critical problems, such as autonomous
driving.

MPC for Safe Crossing
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Therefore, a velocity control module based on MPC
is used to ensure safe crossing at the intersections.

Garcia and Fernandez, 2015
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MDP Framework

Consider a Markov Decision Process (MDP), where the state transition and the
collected reward are defined through the following probability distributions
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with the action given by

Sutton and Barto, 1998
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Solve an MDP

Solving an MDP consists in selecting the policy 𝜋: 𝑋 → 𝑈 which maximizes the
long term expected return
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The reward function has to be
designed by the control engineers
in order to accomplish a desired
task.
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RL Definitions

The long term expected return of a policy 𝜋 is also known as the state value
function

The state-action value function of a policy 𝜋 corresponds to the long-term
expected return when action 𝑢 𝑡𝑘 is taken in state 𝑥 𝑡𝑘 and then the policy 𝜋
is followed henceforth:
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RL Definitions

The following equations define the optimum for the state-action value function
and its relationship with the optimal state value one

The optimal policy is then defined as
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The RL-agent builds the
function Q⋆ by interacting
with the environment.
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Reinforcement Learning Algorithms

The main RL algorithms can be divided in two main groups:

• Tabular methods: cumulative reward expressed using tables with states and
actions. -> Suitable for small and discrete spaces (curse of dimensionality).

• Approximate Dynamic Programming (ADP): cumulative reward represented
via approximators (e.g., neural networks). For instance we recall:

• Deep Q-learning: discrete set of actions

• Deep Deterministic Policy Gradient: continuous set of actions
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Deep Deterministic Policy Gradient (DDPG)

DDPG relies on the actor-critic paradigm: the actor learns the parametrized
policy and the critic learns the parametrized Q-function.

The information provided by the critic is used as a reinforcing signal for the actor.
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Features:

• Deep neural networks

• Random sampling from replay buffer

• Target networks for stable learning

Lillicrap et al., 2015
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Task: ecological velocity planning in urban context.

We consider a straight and flat road with signalized intersections and uncertain
traffic lights information. Note that surrounding traffic is neglected.

Task and Settings
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The reward is designed in order to minimize the battery equivalent fuel
consumption, the ICE fuel consumption and the travel time:

Reward Function
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The coefficients 𝛼1 and 𝛼2 are suitably chosen weights with the aim of
regulating the trade-off between the different objectives.
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The reward defined above suits perfectly with the concept of episodic task:

• the agent will try to minimize the total time required to travel a certain road
(and cross a certain number of intersections)

Episodic or Continuous Task? Just a Matter of Convention
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The same task, however, can be formulated also in a continuous fashion:

• maximize the travelled distance in a time step
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We assume that some vehicle parameters are uncertain: e.g., the air drag 
coefficients, the rolling resistance,  the air density and the frontal area. 

Uncertainties in the Vehicle Parameters
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Uncertain parameters can be addressed by
considering a partially observable RL
framework, with the use of past
measurements in the state vector.

By designing a training process in which such uncertain parameters are varied
for each episode within a range of interest, it is possible to obtain an agent
robust to the considered uncertainties.



Uncertainties in the Powertrain Parameters 
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The same approach is used also to overcome the uncertainty in the powertrain
parameters and in the powertrain controller.

The powertrain controller in fact is usually
considered as a black-box which varies from
vehicle to vehicle and it is tuned to minimize
an energy related cost function.



Availability of Powertrain Measurements
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While the powertrain itself is considered a black box, we assume that the battery
state of charge, the motor and engine powers, and their energy consumptions
are measurable for state feedback control.

In this work, the energy consumption
measurement is necessary since this
represents the reward signal for the RL agent.



Availability of Signal Phase and Timing Measurements
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The optimal velocity profile depends on the distance and the phase of the
upcoming intersections.

Such measurements are available within a specific range. Outside this range
they can only be approximated by historical values.



It finds the optimal wheel torque in order to track the RL reference velocity while
guaranteeing safe crossing (i.e. with green light) at the intersections.

Safety Crossing Module
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Position and velocity dynamics:

with acceleration:
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Position and velocity dynamics:

with acceleration:
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The RL approach, is compared with two benchmark strategies:

1. A  constant reference velocity, regardless of the measurements

2. A variable reference velocity, according to the signal phase and timing
information of the traffic lights for the upcoming intersection.

Benchmark Algorithms
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Training Process
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During the training process, the traffic lights configuration, as well as the vehicle
and the powertrain parameters are randomly initialized among the different
episodes.

In this way, the agent learns to find the optimal velocity in a generic scenario,
and not only for a specific configuration of the intersections.



Training Results
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The training can be considered completed
after 1500 episodes.
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Statistical Comparison
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Statistical Comparison
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The RL-based return is the highest over 250 different scenarios:
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Statistical Comparison
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The RL-based return is the highest over 250 different scenarios:
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Conclusions
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✓ We use model-free reinforcement learning to solve the ecological velocity
planning problem in an urban context with traffic lights

✓ A model predictive controller is employed for ensuring safety crossing at the
intersections

✓ The training process and the state variables are designed in order to develop
an agent which is robust to variation in vehicle and powertrain parameters

✓ Lower fuel consumption can be achieved in the same travel time with
respect to benchmark methods.
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Thank you very much for your attention!!

Suggestions, questions and advices are welcomed!
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Specific Scenario Validation

The trajectory of the RL is much
smoother, thus avoiding useless idle
time and reducing consumptions.
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Deep Deterministic Policy Gradient (DDPG)
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Statistical Comparison

Charge Deplating
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Charge Sustaining
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The terms in the acceleration are the following

Safety Crossing Module
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vehicle mass wheel radius

air drag resistance rolling resistance
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The velocity controller prevents the vehicle from standing in the middle of the
intersections during phase transitions.

Safety Crossing Module

50
Catholic University of Sacred Heart – UC Berkeley

with constraints on the distance on the upcoming traffic light according to its
phase. We assume that the yellow light phase is long enough for the vehicle to
come to a full stop with the maximum deceleration.


