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Who we are (IDA)

● Simon F. Nørrelykke (staff)
○ Physicist

● Szymon Stoma (staff)
○ Computer Scientist

● Andrzej Rzepiela (staff)
○ Bioinformatician
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Where we are
● Part of ScopeM:

○ ~40 permanent staff members (~30 FTE)
○ Electron and light microscopy
○ Lab automation
○ Sample preparation
○ ~700 active users
○ ~20 EMs, ~30 LMs, ~40 misc tools
○ Services all of ETH Zurich + industry

● Part of ETH Zurich
○ 6’500 academic staff
○ ~20’000 students
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What we do
● User support for image and data analysis projects (charged and free)

○ ~20%

● Internal support in ScopeM
○ ~10%

● Teach, internally and external
○ ~20%

● Build and maintain IT infrastructure
○ ~10%

● Overhead (meetings, reporting, grant writing, ...)
○ ~20%

● R&D (further education: conferences, reading papers)
○ ~20%
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Project types
Almost exclusively in biology. Mainly LM, increasing number of EM projects. 

● High content screening campaigns
○ Run over multiple years
○ More data wrangling and analysis than actually image analysis
○ Considerable infrastructure overhead (computing, storage, access)

● Light and electron microscopy projects
○ Counting objects, co-localisation, measuring intensities, quantifying structures
○ Using open source software and custom written code

● Deep Learning approach
○ HCS, LM, EM: image restoration, segmentation, classification
○ Focus is on preparing the data and managing user expectations
○ Using existing/published architectures and models
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Project types
By duration and charge

● Image Clinics
○ Free 1h consults on a weekly basis, 1-on-1
○ About 50 consults per year

● Free trials
○ 4-8 hours of feasibility study or complete solution
○ 10-20 per year

● Paid projects
○ Charged by the hour, currently 80CHF/hour (200 CHF/hour industry)
○ 10-20 per year

● Larger collaborations
○ Lump-sum payment for 200-300h, typically high-content screening campaigns
○ 1-3 per year 7



Teaching
We teach image analysis to life scientist

● Recurrent 3-day introductions based on Fiji
● Occasional 1-day trainings in PhD schools
● Yearly summer school (ZIDAS) since 2017- now with EPFL, Basel, Bern
● Participate in various schools

○ EXCITE: 2-week ETH course in imaging
○ EMBL: “Deep Learning for Image Analysis” and “Advanced Methods in BioImage Analysis”
○ NEUBIAS - training schools, started with Kota Miura’s BIAS @ EMBL

● Why do we teach?
○ We have to: Part of job description; few others bridge biology to computer-science 
○ Scales: Give user a fishing-rod, not just a fish
○ Fun and rewarding for all involved

8



Example screening data
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DAPI stained nuclei

You can segment these 
blindfolded

Now do it in 100’000 
images



Example data
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Segmentation result

Not very interesting

Classic methods fine

Bread and butter IA



Example data
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RFP channel, same field of 
view as previous image

One particular protein is 
stained and we want to 
“quantify it”

Segment or approximate?
What is good enough?



Projects and constraints
● The question is not if we can do the project, but if we can do it in days/hours

● Unlike researchers we don’t have just a few projects we work on for years

● We have tens of projects that vary in size and duration

● Users (their PIs) don’t want to pay for multiple weeks, let alone months

● This means we rarely have the time to develop own tools

● It also means we often operate with “good enough”

○ If the signal is strong the method can be weak 

12



Open source to the rescue
● Not having time to develop tools, we use and adapt existing ones

● Unlike 10-20 years ago we are now flooded with image analysis software

● We have the luxury problem of picking among existing solutions

● Means we have to stay informed of what comes out
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Lessons learned (things to keep in mind) re. tools
● Good enough is good enough (perfect is the enemy of done)

● Rarely worth learning (adapting) a highly specialised tool that is a perfect fit

● Learn to master a few tools that cover different problems

● Go for polyglot tools when possible
○ E.g. ImageJ/Fiji, or better yet Python, specifically ZeroCostDL4Mic
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Tools that we commonly use (the big 5)
● ImageJ/Fiji

○ Does ~everything and is known by ~all biologists
○ Thousands of plugins, now also for pretrained NNs

● CellProfiler + CellProfiler Analyst
○ No-code workflows, for cell segmentation and classification

● Ilastik
○ No-code pixel classification and more

● QuPath
○ Digital pathology/histology/FL, superb UI and documentation, DL interface

● Imaris
○ Commercial, no-code IA for big 3D data, now with interface to open source ML
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When the big-5 isn’t enough
● More specialized stand-alone tools

○ see http://biii.eu/ for annotated list of 1’000+ tools (BioImage Informatics Index) 

● Python
○ Data-wrangling code (big part of most projects) 
○ Implement open source tools, e.g. StarDist or CellPose or CSBDeep 
○ Scikit-image
○ ZeroCostDL4Mic
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StarDist

17https://github.com/stardist/stardist Uwe Schmidt and Martin Weigert and Coleman Broaddus and Gene Myers

From 2018

For segmentation

Very robust and accurate

Allows overlap

Only star-convex objects

Pre-trained Fiji plugin

ZeroCost notebooks

https://github.com/stardist/stardist


CellPose

18http://www.cellpose.org/   Carsen Stringer, Michalis Michaelos, Marius Pachitariu

From 2020

Versatile segmentation

Also non-covex objects

Web interface

GitHub

QuPath

http://www.cellpose.org/
http://orcid.org/0000-0002-9229-4100


CSBDeep - a DL toolbox for microscopists

19http://csbdeep.bioimagecomputing.com/ 

From ~2018

Florian Jug et al

Spearheaded the application of 
DL for microscopy image 
analysis

Initially just restoration

http://csbdeep.bioimagecomputing.com/


ZeroCostDL4Mic
● “ZeroCostDL4Mic is a toolbox for the training and implementation of common 

Deep Learning approaches to microscopy imaging. It exploits the ease-of-use 
and access to GPU provided by Google Colab.”

● Research grade DL for busy people (image analysts and biologists)
● Python: polyglot and de facto standard in DL
● Google Colab: GPU and environments taken care of
● Limitations: Power and storage (money can solve this)

20https://github.com/HenriquesLab/ZeroCostDL4Mic/wiki 

https://github.com/HenriquesLab/ZeroCostDL4Mic/wiki


ZeroCostDL4Mic

21https://cellmig.org/image-analysis/ 

Image to image translation (pix2pix)

Left side is input
Right side is the prediction

Similar to “Synthetic Fluorescence”

Video link: 
https://videopress.com/v/1zQCljlF 

https://cellmig.org/image-analysis/
https://videopress.com/v/1zQCljlF


ZeroCostDL4Mic
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https://cellmig.org/image-analysis/ 

Image restoration using 
CARE

Unet trained on pairs of 
images: low and high quality

https://cellmig.org/image-analysis/


ZeroCostDL4Mic

23https://github.com/HenriquesLab/ZeroCostDL4Mic/wiki 

https://github.com/HenriquesLab/ZeroCostDL4Mic/wiki


ZeroCostDL4Mic

24https://github.com/HenriquesLab/ZeroCostDL4Mic/wiki 

https://github.com/HenriquesLab/ZeroCostDL4Mic/wiki


Research
● We don’t really have time for our own research projects
● Except when we can hire a postdoc
● Example: Nelly Hajizadeh

○ Worked on denoising of cryo-electron microscopy images
○ Implemented new type of loss function with better frequency response
○ “Image quality measurements and denoising using Fourier Ring Correlations
○  https://arxiv.org/abs/2201.03992 

● Research requires funding, which requires research, which …
● Only grant chances are blind reviews and similar

○ Novartis Freenovation
○ SNF Spark
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Challenges
● How to deal with “being forgotten” in publications

○ Forgotten due to physical absence (big campus, different buildings)
○ Forgotten due to time-lag between service and publishing
○ Approach: Bring this up at beginning of project, get written agreement, follow up

● How to deal with changing charging model and targets
○ ETH sets price: Since 2013, 0 → 75 → 80 → 40 → 80
○ ScopeM sets targets. This year: 1’000 hours, i.e. 80’000 - 140’000 CHF should be billed
○ Approach: Some flexibility in fraction of hours actually charged - write grants with users

● How do deal with users asking for cost estimate
○ Give estimate if possible, otherwise explain this is research and therefore hard to estimate
○ Suggest open tab with reporting every 20-40 hours spent on project
○ Say “40h” then absorb additional time (good for user, bad for ScopeM?)

● Generic issue to avoid: Telling people both what to do and how to do it
○ Example: Sell X hours, but not more than Y per group and charge Z per hour and ...
○ Tried under communism: 5-year plans don’t really work for anything but killing an economy 26



Benefits of image analysis facilities
● For analysts

○ Exposure to wide variety of scientific problems
○ Chance to teach (good if you like it)
○ No publish-or-perish, just publish-or-languish
○ Get to play with many new developments

● For the user
○ Access to image analysis expertise with a human interface
○ Can be hard for a user to search web if they don’t know the image analysis jargon
○ They don’t have to stay up to date on technological developments and implementations

● For host institution
○ Increases quality of data analysis done
○ Allows smaller groups to do research that requires many areas of expert knowledge
○ Teaching of what is relevant, in small and flexible courses
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Last slide. Thank you. Here some links

● SwissBIAS: Swiss BioImage Analysts’ Society
○ https://swissbias.ch 

● Forum: The place online for bioimage analysis knowledge
○ https://forum.image.sc/ 

● ZIDAS 2022: SwitZerland’s Image and Data Analysis School
○ https://www.zidas.org/ 
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https://swissbias.ch
https://forum.image.sc/
https://www.zidas.org/


29



Insights
● Be clear about your role and what you want

○ Insist on co-authorship or be forgotten
○ Charging is independent of intellectual contribution (postdocs are paid and authors)

● Passive versus active project acquirement
○ Passive (users come to us) tends to be smaller, less interesting project

■ Part of job, always keep resources for these
○ Active (we come to users) more likely to lead to longer collaborations

■ Can be hard to find the time, but is rewarding

● New technologies
○ We are the experts and have to identify new areas, then go there
○ Example: Moved into deep learning ~five years ago, considerable effort but paying off now
○ Sometimes enough to stay informed, without becoming expert–time is limited
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Who to hire for your Image Analysis Facility?
● Questions to answer first

○ How many will you be (secured funding for the first years, later)?
○ What will your tasks be (EM, LM, HCS, medical, biology, materials science)?
○ What do you want your facility to be (service, research, development, teaching)?

● “Horses for courses”, example from ETH
○ Simon: Likes order, teaching, analysing problems

■ Role: support the others, teach, management
○ Szymon: Enjoys multitasking, teaching, coding, helping users, creating start-ups

■ Role: Many small-medium size projects, teaching
○ Andrzej: Enjoys single-tasking, data analysis, building IT infrastructure

■ Role: Few large projects, grant writing, IT
○ Post-docs: For deep work, research projects, teaching and support as desired

■ Role: Research postdoc, learn and do
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What is the ideal image analysis facility?
● User perspective

○ Easy access: Just show up with project
○ Fast solutions: Work starts now and is finished in days/weeks (yesterday is best)
○ Free of charge

● Staff perspective
○ Interesting projects, not too many at the same time
○ Acknowledgement of contribution, i.e. treated as equal
○ Minimum administrative overhead (charging hours, logging every hour of the day)
○ Mixture of permanent and temporary staff: keep knowledge in house and gain fresh input
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History of IDA
● Formed in December 2012, in response to experience from earlier model:

○ Then: Part of light microscopy (LM) and screening facility
○ Then: Only serving one institute in one department
○ Then: Two units - image analysis (one person) and data analysis (one person)
○ Issues: No clear rules for engagement leading to:

■ Analysts chose projects they found interesting
■ A few very happy users and some unhappy users

○ Response: Form one unit and start charging for projects

● Since 2014
○ Light and electron microscopy (EM) facilities merged into ScopeM
○ ScopeM serving all of university
○ IDA still strongly attached to LM side for historical reasons
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Publishing
● Why do we want to publish?

○ Fairness: Intellectual contributions should be acknowledged
○ Need papers for winning grants
○ Career: Not all stay as staff, need proof of productivity

● What do we do?
○ Contribute methods descriptions, figures, tables, statistics
○ Write entire papers (ongoing/future)

● Factoids
○ Zero publications first four years (2013-2016)
○ A few each year after that
○ Main change: We started insisting on co-authorship
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