Machine learning and snowflakes

A. Berne

Environmental Remote Sensing Laboratory EPFL, Lausanne, Switzerland

Applied Machine Learning Days 2019 - Lausanne, 29 Jan. 2019

Blowing snow detection

Conclusions

Importance of precipitation

Precipitation = flux of (solid/liquid) water from atmosphere to Earth surface.

- Crucial for the water cycle, the climate system and ecosystems.
- At the interface of many environmental disciplines.

Conclusions

Societal impacts

Transportation

Power supply

Importance of snowfall

- Significant if not dominant in total precip at high altitudes/latitudes.
- How much will it snow? Down to which altitude? What kind of snow?

Water storage

Traffic...

Mountain tourism

- Modelling and forecasting of (solid) precipitation is difficult.
- Cold microphysics is not as well understood as warm microphysics.

Machine Learning?

Global map of precipitation - 28/01/2019 (source: GSMaP)

Forecasted precip (source: MeteoSwiss)

- Development of remote sensing capabilities (satellite + ground-based).
- Development of NWP and climate models (more processes + higher res.)
- Large multidimensional data sets with large (subgrid) variability ⇒ potential for ML approaches to extract relevant information...

Conclusions

- **2** Snowflake classification
- **3** Blowing snow detection

The Multi-Angle Snowflake Camera

Measurements

- 3 images from 3 different coplanar angles.
- Resolution ~ 33 μm, sampling area ~ 8.3 cm².
- Falling velocity [m.s⁻¹].

Data sets

Dumont d'Urville (2015-16,2017)

Davos (2015-16)

About 500k images in each data set...

Examples of snowflakes pictured by the MASC

- Variability of shape, size, etc.
- Human eye/brain can distinguish and group pictures.
- Huge number of pictures \rightarrow we need an automatic classification.

Output of classification scheme (1)

- Started with 10 main categories taken from Magono and Lee (1966).
- Removed classes rarely observed (germ of snow, comb. of planar crystals).
- Added aggregates and small crystals.
- Merged similar classes (col. needles ; plates / sectored plates / dend.).

Output of classification scheme (2)

Complementary information : riming degree and melting or not.

Riming degree

- Continuous value in general...
- Trained as ordinal value from 1 to 5.

(adapted from Mosimann et al. 1994)

Melting snow

- Cont. value in general...
- Here: boolean (dry / melting).

Summarizing flowchart

Conclusions

Application to MASC image triplets

Example:

65% planar crystal 30% aggregate 5% others Riming = 2.2 Dry 71% planar crystal 26% aggregate 3% others Riming = 2.5 Dry ~97% columnar crystal 3% planar crystal ~0% others Riming = 2.0 Dry

 \Rightarrow Dry, moderately rimed planar crystal.

Blowing snow vs snowfall

- Blowing snow = ground snow particles suspended by wind.
- Snowfall = snowflakes formed in atm. and falling to the surface.
- \Rightarrow Crucial to distinguish the two for water mass balance.

Visible over ridges

http://la-haut.over-blog.fr/2014/01/2-jours-en-foret-dans-la-neige.html

Significant over polar ice sheets

Blowing snow from MASC

Thanks to campaigns in the Swiss Alps (Davos) and in Antarctica (DDU) \to MASC data \pm contaminated by blowing snow.

Classification using GMM

- 4 features related to image frequency; particle number + size + geometry.
- Training set manually built (4623 images of precipitation, BS and mixture).

Mixed images

- Challenge: when BS and precip at the same time...
- GMM: probability for each GM \rightarrow angle $\psi = \frac{2}{\pi} \arctan\{\frac{-\log[P(k_P[\mathbf{x}_i)P(\mathbf{x}_i)]}{-\log[P(k_{DC}|\mathbf{x}_i)P(\mathbf{x}_i)]}\}$

	1	2	3	4
date_vec_unique	ID	Label	Normalized_Angle	Flag_mixed
25/03/2016 16:56:35	7383	1	0.7422	0.8178
25/03/2016 16:56:39	7384	0	0.1590	NaN
25/03/2016 16:56:39	7385	1	0.5659	0.5865
25/03/2016 16:56:40	7386	0	0.1437	NaN
25/03/2016 16:56:42	7387	0	0.1920	NaN
25/03/2016 16:56:42	7388	0	0.2260	0.0537
			•	

Outcome for snowflake type statistics

Summary

Snowflake classification

- MASC provides high-resolution photographs of snowflakes.
- MLR used to automatize the classification of large MASC data sets.
- Subsequent analysis of snowflake microphysical properties useful for process understanding and model parameterization improvement.

Blowing snow vs snowfall

- Ground-level measurements of snowfall potentially contaminated by blowing snow.
- GMM were employed to distinguish and quantify mixing of blowing snow and snowfall particles.

ML and precipitation

A variety of potential applications

- Parameterization of subgrid processes in climate/meteo models.
- Downscaling: use large-scale information to constrain downscaled fields at higher resolutions.
- Precipitation estimation (e.g. by data fusion) and nowcasting (extrapolation of spatial field).
- Early warning for precipitation-related natural hazards (e.g. floods, avalanches, landslides, debris flows).

Challenges for / expectations from ML

- How to deal with non-stationary uncertainty in observations / references?
- Include/combine a priori knowledge and physics, possibly at different scales, in the learning step.
- Provide information about important processes at work.
- Provide probabilistic ouput suitable for many env./climate variables.

Conclusions

Thank you

