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NASA System-Wide Safety Project

Technical Challenge 1: Integrated Risk Assessment for the
Terminal Area

— Develop tools to collect and analyze relevant data, identify
incidents

— Integrate tools into dashboards for risk assessment
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The Anatomy of an Aviation Safety Incident S
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From Irving Statler, Aviation Safety Monitoring and Modeling Project



Range of Problems

« Types of data
— Flight Operations Quality Assurance (FOQA) / FDM
— Trajectory/Radar Track Data
— Safety Reports
— Weather
— Others
« Types of problems
— Anomaly Detection
— Precursor ldentification
— Text: Classification, topic identification



Data-Driven Methods

* DISCOVER anomalies by

— learning statistical properties of the data

— finding which data points do not fit (e.g.,
far away, low probability)

o Operationally
 Complementary to existing methods  Normal

— Lower false negative (missed detection)
rate

— Higher false positive rate (identified
points/flights unusual, but not always
operationally significant)

e Data-driven methods -> insights ->
modification of exceedance
detection Known

Statisticaliv False Alarms

Anoma|0 Unknown
Operationglly Problems
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Drop in airspeed

30 seconds after takeoff, drop in airspeed to 12

knots above estimated stall speed. Drop in

airspeed continued for 30 seconds.
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Mode Confusion
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High Speed Go-Around &

e Qvershoots Extended e QOver 250 Kts @2500 Ft.

Runway Centerline (ERC) « Angle of intercept > 40°

by over 1 SM * Qvershoots 2"d approach

Note: Aircraft not drawn to scale.




Multiple Kernel Anomaly Detection (MKAD) &

Advantages:

e Data can be
heterogeneous

e Kernels can be combined
and tuned for different

data types.

* Take advantage of off-the
shelf
anomaly detection
algorithms like
One-class Support Vector
Machines.




Optimization problem S
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Discrete Kernel: normalized Longest Common Subsequence (nLCS)
Continuous Kernel: nLCS of SAX representations
Text Kernel: Euclidian distances between projections onto LDA topic vectors



Data-Driven Methods

* DISCOVER anomalies by

— learning statistical properties of the data

— finding which data points do not fit (e.g., far
away, low probability) Operationally

_ Normal
 Complementary to existing methods
— Lower false negative (missed detection) rate

— Higher false positive rate (identified
points/flights unusual, but not always

operationally significant)
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Active Learning Approach
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Screen Shot of Annotator

MKAD Rank 19) Fast at 10 nm from TD as indicated by Airspeed. Use of Speedbrakes brings the
light to typical conditions at 4 nm from TD.

Fast at 10 nm from TD as indicated by Airspeed. Use of Speedbrakes brings the flight to typical conditions at 4 nm from TD.
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OS/NOS Flight Overlap Between Methods

detects 4 more OS Flights
an top MKAD rankings

AL finds 4 fewer false positives
than top MKAD rankings
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Precursor to go-around—
Energy Mismanagement
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Upper left plot shows that ground speed is higher than normal.
This is responsible for precursor index (lower right) being high,
indicating high probability of go-around.

Algorithm automatically identified precursor, given go-around condition as target
effect.



Automatic Discovery Of Precursors in Time series @*
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Upcoming Work

« Anomaly Detection / Active Learning
—Further testing of algorithm and user interface

—Incorporate multiple anomaly detection algorithms, active learning
strategies, users

 Precursor Identification
—0Ongoing work on autoencoder based algorithm
» Text
—Sustained effort!
—Aviation Safety Reporting System: Use unredacted reports
—Non-traditional data sources: pilot blogs, others
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Contact: nikunj.c.oza@nasa.gov
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