MACHINE-LEARNING BASED MULTI-OMICS DATA INTEGRATION FOR PERSONALIZED ONCOLGY

Florian Buettner

• Omics profiling uncovers novel variation between patients

- Omics profiling uncovers novel variation between patients
- Latent variable models
 - Statistical tool to infer an unobserved, hidden state of a biological system based on observable data that is often high-dimensional
 - Reduce a high-dimensional dataset of correlated observations into a lowdimensional dataset of uncorrelated and interpretable latent variables

- Omics profiling uncovers novel variation between patients
- Latent variable models
 - Statistical tool to infer an unobserved, hidden state of a biological system based on observable data that is often high-dimensional
 - Reduce a high-dimensional dataset of correlated observations into a lowdimensional dataset of uncorrelated and interpretable latent variables

Buettner et al Genome Biology, 2017

MULTI-OMICS FACTOR ANALYSIS

Arguelaget, ..., Huber#/Buettner#/Stegle#, 2018

MULTI-OMICS FACTOR ANALYSIS

Arguelaget, ..., Huber#/Buettner#/Stegle#, 2018

MULTI-OMICS FACTOR ANALYSIS

Arguelaget, ..., Huber#/Buettner#/Stegle#, 2018

- Identify drivers of variation that are shared between omics layers or unique
- Model binary/count data
- Account for missing values
- Approximate Bayesian inference for scalability

- Acute myeloid leukemia (AML)
 - Treatment decisions based on genomic classification (~15 mutations)
 - Large fraction in outcome variability remains unexplained

- Acute myeloid leukemia (AML)

 - Treatment decisions based on genomic classification (~15 mutations) Large fraction in outcome variability remains unexplained
- Hypothesis
- Patient subpopulations with distinct survival profile defined by multi-ome

- Acute myeloid leukemia (AML)
 - Large fraction in outcome variability remains unexplained
 - Treatment decisions based on genomic classification (~15 mutations)
- Hypothesis
- Patient subpopulations with distinct survival profile defined by multi-ome
- Approach
 - Two independent patient cohorts
 - Discovery cohort (177 patients) and validation cohort (~70 patients), profiled with different technologies
 - Measure Common Mutations, Transcriptome (RNA), Proteome, other risk factors
 - Record survival

PROTEOMIC CHARACTERISATION OF PATIENTS

- Compute patient-patient distances and use clustering approach to define patient subpopulations
- Charaterize subpopulations via pathway analysis

CHARACTERIZATION OF SUBPOPULATIONS

- Use pre-annotated pathways to identify biological processes driving differences between clusters
- Comparative cluster analysis
- Gene set variation analysis (GSVA)

CHARACTERIZATION OF SUBPOPULATIONS

- Use pre-annotated pathways to identify biological processes driving differences between clusters
- Comparative cluster analysis
- Gene set variation analysis (GSVA)

- 28 factors explaining variation in the data
- Mix of shared and unique drivers
- Most dominant factor LF1 active in all 4 data views
- Inspections of loadings reveals LF1 explains known axis of HOX/NPM1

DKTK German Cancer Consortium

- 28 factors explaining variation in the data
- Mix of shared and unique drivers
- Most dominant factor LF1 active in all 4 data views
- Inspections of loadings reveals LF1 explains known axis of HOX/NPM1

DKTK German Cancer Consortium

- 28 factors explaining variation in the data
- Mix of shared and unique drivers
- Most dominant factor LF1 active in all 4 data views
- Inspections of loadings reveals LF1 explains known axis of HOX/NPM1

DKTK German Cancer Consortium

- 28 factors explaining variation in the data
- Mix of shared and unique drivers
- Most dominant factor LF1 active in all 4 data views
- Inspections of loadings reveals LF1 explains known axis of HOX/NPM1

DKTK German Cancer Consortium

- 28 factors explaining variation in the data
- Mix of shared and unique drivers
- Most dominant factor LF1 active in all 4 data views
- Inspections of loadings reveals LF1 explains known axis of HOX/NPM1

DKTK German Cancer Consortium

MOFA IDENTIFIES NEW DRIVERS OF VARIATION

- LF6 most dominant factor active in only one view (proteome)
- LF6 represents same Mito processes form cluster 1

MOFA IDENTIFIES NEW DRIVERS OF VARIATION

- LF6 most dominant factor active in only one view (proteome)
- LF6 represents same Mito processes form cluster 1

MOFA IDENTIFIES NEW DRIVERS OF VARIATION

- LF6 most dominant factor active in only one view (proteome)
- LF6 represents same Mito processes form cluster 1

- Clusters 1 and 5 have distance survival phenotype
- Survival for patients in cluster 1 significantly worse, for cluster 5 significantly better

- Clusters 1 and 5 have distance survival phenotype
- Survival for patients in cluster 1 significantly worse, for cluster 5 significantly better

C-Mito	Non-Mito <i>(N=152)</i>	referen	ice					
	Mito (N=25) (1	3.57 .92 - 6.6	62)				<(0.001 *** ••••
ELN 2017	Intermediate (N=84)	, referen	ice					
	Favorable (N=57) (0	0.41 .21 - 0.8	32)	-			0.0)11 *
	Adverse (N=36) (1	2.39 .35 - 4.2	24)			- i	0.0	003 **
Age	50–65 (N=77)	referen	ice			•		
	>65 (N=53) (1	2.09 .25 - 3.5	50)				0 .0	005 **
	<50 (N=47) (0	0.34 .15 - 0.7	78) 				0.0)11 *
# Events: 67; 0 AIC: 597.31: 0	Global p-value concordance In	0.1 (Log-Rai dex: 0.74	1 0 nk): 7.4	.2 1917e-1	0.5 0	1 2	2 5	5

- Clusters 1 and 5 have distance survival phenotype
- Survival for patients in cluster 1 significantly worse, for cluster 5 significantly better

AIC: 597.31; Concordance Index: 0.74

- Clusters 1 and 5 have distance survival phenotype
- Survival for patients in cluster 1 significantly worse, for cluster 5 significantly better

Events: 67; Global p-value (Log-Rank): 9.25e-09 AIC: 602.65; Concordance Index: 0.73

0.1

0.2

0.5

- Clusters 1 and 5 have distance survival phenotype
- Survival for patients in cluster 1 significantly worse, for cluster 5 significantly better

DKTK German Cancer Consortium

GOETHE

UNIVERSITÄT

FRANKFURT AM MAIN

MITO CLUSTER CAN BE PREDICTED PROSPECTIVELY

- Train supervised classifier on discovery cohort
 - Identify small set of predictive proteins
- Test on validation cohort

MITO CLUSTER CAN BE PREDICTED PROSPECTIVELY

• Test on validation cohort

MITO CLUSTER CAN BE PREDICTED PROSPECTIVELY

• Test on validation cohort

SUMMARY AND OUTLOOK

- Multi-omics approach discovered proteomic AML subtypes with clinical relevance
- Mito-AML is hypersensitive to drugs targeting mitochondrial complex I
- Use mito classifier to stratify patients for venetoclax-based therapies

LEVERAGING PRIOR INFORMATION IN MULTI-OMICS MODELLING

- Characterising factors in FA models is challenging
- Use prior knowledge from pathways already during inference
- Associate each factor to a pathway

LEVERAGING PRIOR INFORMATION IN MULTI-OMICS MODELLING

- Characterising factors in FA models is challenging
- Use prior knowledge from pathways already during inference
- Associate each factor to a pathway

- Infer pathways driving interpatient variation
- Refine and customise pathway annotations
- Identify interpretable patient sub-populations

MUVI: A MULTI-VIEW LATENT VARIABLE MODEL WITH DOMAIN-INFORMED STRUCTURED SPARSITY

DKTK German Cancer Consortium

Qoku and Buettner, in submission

MUVI: A MULTI-VIEW LATENT VARIABLE MODEL WITH DOMAIN-INFORMED STRUCTURED SPARSITY

DKTK German Cancer Consortium

Hierarchical shrinkage via horseshoe prior

Qoku and Buettner, in submission

MUVI COMBINES DOMAIN-INDUCED SPARSITY WITH LOW **RECONSTRUCTION ERROR**

- Simulate multi-view expression data with noisy pathways
- Compare MUVI to
- MOFA
- BASS (Bayesian group factor analysis with structured sparsity
- Multi-view VAE

PAN-CANCER MULTI-OMICS ANALYSIS OF TCGA

- Use MuVI to analyze TCGA data
 - 4 data views (DNA methylation, mRNA expression, microRNA and reverse phase protein array (RPPA)
 - 11k patients, 33 cancer types

Global view

MULTI-SCALE ANALYSIS

DKTK German Cancer Consortium

 Use latent variable models to infer unobservable hidden states from observable data, taking prior knowledge into account

- observable data, taking prior knowledge into account
 - AML patients
- Software

Use latent variable models to infer unobservable hidden states from

- observable data, taking prior knowledge into account
 - AML patients
- Software
 - github.com/bioFAM

Use latent variable models to infer unobservable hidden states from

- observable data, taking prior knowledge into account
 - AML patients
- Software
 - github.com/bioFAM
- <u>https://github.com/MLO-lab/MuVI</u>

Use latent variable models to infer unobservable hidden states from

- observable data, taking prior knowledge into account
 - AML patients
- Software
 - github.com/bioFAM
 - <u>https://github.com/MLO-lab/MuVI</u>
- https://mlo-lab.github.io/

Use latent variable models to infer unobservable hidden states from

ACKNOWLEDGEMENTS

- Ricard Arguelaget, Oliver Stegle (EBI, Cambridge)
- Thomas Oellerich, Sebastian Wolf (Uniklinik Frankfurt)
- Matthias Mann, Ashok Jayavelu (MPI München)
- Arber Qoku, Andreas Kopf, Sebastian Gruber (MLO/DKTK, Frankfurt)

