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Background

• Human brains possess highly sophisticated structures and functions owing to the mechanical properties.

• Mechanical modelling is a promising tool to understand and predict the behaviour of human brain tissue
under extreme conditions such as traumatic injury, shaken baby syndrome and tumor growth.

• Hyperelastic material models allow to understand the nonlinear strain-stress relationship of human 
brain under extremely large elastic deformation up to 700% and various loading modes. 

• Conventional methods for choosing and calibrating material models are time-consuming, error-prone
and call for an automation.

• Sparse regression reveals material models from a large candidate model library by excluding irrelevant 
terms caused by noises, outliers or anormalies in observation. 



Hyperelastic model for brain tissue
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Characteristics of hyperelastic material model
• Non-linearly elastic
• Large elastic deformation even to 700 %
• Nearly incompressible
• Suitable for soft flexible materials
• Describable by strain energy density function

Strain energy density function
• Scalar valued function relating strain energy density 𝑊 of a material to the 3-

dimensional deformation gradient 𝐅

• Stress (𝐏) and torque (𝜏) under different loads can be derived directly from 
strain energy density

Incompressibility constraint

Uniaxial tension (UT)
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Simple torsion (ST)

𝜆 = 1



Model discovery with sparse regression

Strain energy density functions can be described with a large feature library
• Linear invariant models

 Mooney-Rivlin model
 Logarithmic model

• Non-linear principal stretch models
 Ogden model

• Material parameter vector 𝜽

Sparse regression 
• Refers to reduction of numbers of features for an overdetermined system 

by turning as many terms of 𝜽 as possible to zeros
• Filters out the most relevant features from the large library 
• Reduce the influences of noise, outliers and anomalies of observations

Invariants and principal 
stretches are dependent on 
the deformation gradient 𝐅. 

Mooney-Rivlin

Logarithmic

Ogden



Algorithmus of model discovery

Minimization of target function

Load step

Data point

Computed value

• Stress

• Torque

Strain energy density function depending on material parameters

Increasing the regularization coefficient 𝜆௣ leads to more sparse result.

p-norm



Result of sparse regression model for brain tissue

Feature library
• Linear models: 3-term Mooney-Rivlin model + logarithmic model
• Non-linear model: 3-term Ogden model

Result

Uniaxial tension (UT) Simple torsion (ST)



Thank you for your attention


