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Background ETHzirich )

* Human brains possess highly sophisticated structures and functions owing to the mechanical properties.

e Mechanical modelling is a promising tool to understand and predict the behaviour of human brain tissue
under extreme conditions such as traumatic injury, shaken baby syndrome and tumor growth.

* Hyperelastic material models allow to understand the nonlinear strain-stress relationship of human
brain under extremely large elastic deformation up to 700% and various loading modes.

* Conventional methods for choosing and calibrating material models are time-consuming, error-prone
and call for an automation.

e Sparse regression reveals material models from a large candidate model library by excluding irrelevant
terms caused by noises, outliers or anormalies in observation.
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Characteristics of hyperelastic material model

Non-linearly elastic &
Large elastic deformation even to 700 % R Q?}
Nearly incompressible e
Suitable for soft flexible materials
Describable by strain energy density function

Strain energy density function

Scalar valued function relating strain energy density W of a material to the 3- I Uniaxial tension (UT)
dimensional deformation gradient F

W (F) = W (F) -] (J (F) — 1)

Incompressibility constraint

M
Stress (P) and torque (7) under different loads can be derived directly from

strain energy density
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Model discovery with sparse regression ETHzurich ® rove

Strain energy density functions can be described with a large feature library  Invariants and principal
* Linear invariant models stretches are dependent on
= Mooney-Rivlin model the deformation gradient F.
= Logarithmic model
Mooney-Rivlin

* Non-linear principal stretch models Q) =1 -3) (I, -3
= QOgden model
e {1,..,N},ie{1,....}"
W — ]/Vinvariant =1 Wprincipal — W(I,O) 9 W(A,B) JE { ey },Z € { ’ 73}]
Logarithmic
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* Material parameter vector 0

oT _ [QT o7 } _ {QT uT. ol Ogden

linear’ Y non—Ilinear linear?

Q (I) = [log (I3/3)]

M
WA pa) = (A + 257 + (ade) ™" - 3)
Sparse regression m=1 Ym

» Refers to reduction of numbers of features for an overdetermined system
by turning as many terms of @ as possible to zeros

* Filters out the most relevant features from the large library

* Reduce the influences of noise, outliers and anomalies of observations
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Algorithmus of model discovery
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Strain energy density function depending on material parameters

W=Ww (I: 9) als W ()\7 9) = Q (I)T Blinear == |44 (Aa Gnon—linear)
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Minimization of target function

I regularization term
=

@)=Y (O -5°) + A6l
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W
cost term

0 = arg mein (C'(0))

Increasing the regularization coefficient 1, leads to more sparse result.
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Result of sparse regression model for brain tissue

Feature library
* Linear models: 3-term Mooney-Rivlin model + logarithmic model
* Non-linear model: 3-term Ogden model
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Result
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Thank you for your attention



