Learned Models for Physical Simulation and Design

Kimberly Stachenfeld DeepMind

AMLD EPFL 2022

Simulation

How can Machine Learning be useful for simulation?

Simulators that...

Part I

Part III

- Are more efficient
- Are **differentiable**; support efficient **engineering & design** optimization problems
- learn from **real-world data**

Learned Coarse Models for Efficient Turbulence Simulation

Learned Coarse Models for Efficient Turbulence Simulation

Classical numerical solvers used for turbulence simulations are powerful but computationally expensive

Can fully-learned simulators capture complex, chaotic turbulence accurately at lowresolutions?

Our Approach

- 1. Use classical physics solvers to produce **high-resolution trajectories**
- 2. Downsample these trajectories in **space** and **time** to produce training data
- 3. Train a neural network to do next-step prediction on low-resolution frames

Our Approach

- 1. Use classical physics solvers to produce **high-resolution trajectories**
- 2. Downsample these trajectories in **space** and **time** to produce training data
- 3. Train a neural network to do next-step prediction on low-resolution frames
- 4. Evaluate on "rolled out" trajectories

Evaluation:

Our Approach

- 1. Use classical physics solvers to produce **high-resolution trajectories**
- 2. Downsample these trajectories in **space** and **time** to produce training data
- 3. Train a neural network to do next-step prediction on low-resolution frames
- 4. Evaluate on "rolled out" trajectories

U-shaped Stack of Dilated Convolutions

Dilated Convolution Yu & Koltun (2015)

- Keep local structure
- Larger perceptual range

Same # parameters

U-shaped Stack of Dilated Convolutions

Larger perceptual range

Same *#* parameters

7 dilated convolutions in sequence

Gradually increase and decrease range of communication

One model \rightarrow 4 different domains

Domain Generality

1D Kuramoto-Sivashinsky (KS) Equation

2D Incompressible Turbulence

3D Uniform Compressible Decaying Turbulence

3D Mixing Layer Turbulence with Radiative Cooling

Comparison to Coarsened Physics Based Simulator (Athena++)

Slightly lower pixel-wise error than classical simulator at same (32³) resolution during training window

Much better spectral error Athena++ at same (32³) and higher (64³) resolution (ground truth: 128³)

Comparison to Coarsened Physics Based Simulator (Athena++)

Running time

- Athena++
 - Scales O(resolution⁴)
 - CPU only

- Learned model:
 - Up to 1000x faster than Athena at 128³

Time (s)
~4
~60
~1000
~20-30
~1

Learned Model Comparison

Our models quantitatively outperform other, more specialized, parameterized models

Learned Model Comparison

Our models quantitatively outperform other, more specialized, parameterized models

However, most learned models do qualitatively pretty well

Stability

Energy RMS Error

Models trained without noise can be unstable

Using training noise improves stability but has higher one-step error

Stability

Temporal Coarsening

Energy RMS error (trained with noise)

Learned simulators can be trained on larger timesteps.

Larger timesteps cause larger onestep loss but can lead to greater stability

Generalization to different initial conditions

Part I: Conclusions

- Domain-general coarse-grained learned simulators
 - Can capture a **variety** of types of challenging turbulence
 - Outperform classical models in terms of accuracy and speed
 - Especially for preserving high frequency information
- Stability
 - Training noise helps
 - Temporal downsampling helps
- Generalization
 - **Constraints** help with generalization to different initial conditions
 - Dataset augmentation helps with generalization to different box sizes
 - Generalization remains a challenge

Learned Models for Inverse Design

Kelsey Tatiana Allen Guevara-Lopez

Learned Models for Inverse Design

Allen Guevara-Lopez

00

Infrastructure

Engineering

Allen*, Smith*, Tenenbaum, PNAS 2020

Learned Models for Inverse Design

Infrastructure

3D WaterCourse

GD

simulator evaluation

Engineering

Allen Guevara-Lopez

"HappyGlass"

Airfoil Shape Optimization

Allen*, Smith*, Tenenbaum, PNAS 2020

2D Fluid Tools

Can learned simulators can be used to solve challenging physical design problems?

Design Evaluation & Optimization

Parameterize a design space

Learned simulator produces a rollout

Evaluate reward

Across design iterations, design parameters are optimized to maximize reward.

Task Agnostic Model Training with GNNs

GNN -based learned simulators

- work for many types of physics
- efficient, accurate, stable
- differentiable, permitting gradient-based design optimization
- generalize

Simulator is **pre-trained** on **next-step prediction** with data **qualitatively different** from scenes encountered during design.

Generalization with GNN simulators

Pfaff^{*}, Fortunato^{*}, *et al*, ICLR 2021; Sanchez-Gonzalez^{*}, Godwin^{*}, Pfaff^{*}, Ying^{*}, *et al*, ICML 2020

Design Evaluation & Optimization

Parameterize a design space

Learned simulator produces a rollout

Evaluate reward

Across design iterations, design parameters are optimized to maximize reward.

Approaches to Design Optimization

Sampling-based with blackbox forward models

> Cross-entropy method (De Boer et al, 2005)

Gradient-based with learned models

Gradient descent with ADAM (Kingma & Ba, 2014) Gradient-based with hand-crafted models

DAFoam, specialied for aerodynamics (He et al, 2020)

2D Fluid Tools

100 - 1000 particles, 16-36 design dimensions

2D Fluid Tools

3D WaterCourse

2k - 4k particles, 625 design dimensions

Gradient-based optimization (GD) with the learned simulator can solve **high-dimensional design tasks** where a sampling-based approach (CEM) is intractable.

Airfoil Shape Optimization

Comparable designs to specialized DAFoam* Solver (16-48x faster on a single A100 GPU than DAFoam on an 8-core workstation)

Simple tricks like **model ensembles** can yield an extra level of accuracy.

Note the sharper wing tip, stronger S-shape

Stable Gradients over long rollouts

Solutions from gradient-based optimization (GD) continue to improve up to 225 timesteps, and outperform sampling-based CEM up to 275 timesteps.

Part II: Conclusions

- GNN-based learned simulators can support **general-purpose design** over a **variety of challenging physical domains**
 - Problems feature **high dimensional, complex** state spaces and design spaces
 - Useful gradients over 100s of timesteps
- Task-agnostic training on data still permits **out-of-distribution** design
- Match the **accuracy of specialized solvers** on airfoil shape optimization
 - Solutions obtained efficiently
 - Model **ensembles** can achieve an extra level of high accuracy

Next directions

- New domains with new, challenging types of physics
- Exploring more robust optimization procedures
 - Gradient descent suffers from zero or noisy gradients, local optima
- New models of dynamics and design spaces
 - Learned forward models that are better optimized for design tasks
 - Rich models of the design space that support hierarchical, compositional design

Acknowledgements

Contact: stachenfeld@deepmind.com @neuro_kim

Kelsey Allen Tatiana Guevara-Lopez Tobias Pfaff Alvaro Sanchez-Gonzalez

Jessica Hamrick Peter Battaglia

O DeepMind

Google Research

Check out the papers:

Learned Coarse Models for Efficient Turbulence Simulation. Stachenfeld, Fielding, Kochkov, Cranmer, Pfaff, Godwin, Cui, Ho, Battaglia, Sanchez–Gonzalez (ICLR 2022). <u>arxiv.org/abs/2112.15275</u>

Physical Design using Differentiable Learned Simulators. Allen*, Guevara-Lopez*, Stachenfeld*, Sanchez-Gonzalez, Battaglia, Hamrick, Pfaff (2022). <u>arxiv.org/abs/2202.00728</u>

Contact: stachenfeld@deepmind.com @neuro_kim

Density

DeepMind T FLATIRON INSTITUTE

Google Research

Check out the papers:

Pressure

Learned Coarse Models for Efficient Turbulence Simulation. Stachenfeld, Fielding, Kochkov, Cranmer, Pfaff, Godwin, Cui, Ho, Battaglia, Sanchez–Gonzalez (ICLR 2022). <u>arxiv.org/abs/2112.15275</u>

Physical Design using Differentiable Learned Simulators. Allen*, Guevara-Lopez*, Stachenfeld*, Sanchez-Gonzalez, Battaglia, Hamrick, Pfaff (2022). arxiv.org/abs/2202.00728

