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How can Machine Learning be useful for simulation?

e Simulators that...

Part | o Are more efficient
Part Il o Are differentiable; support efficient engineering & design optimization problems
o learn from real-world data
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Learned Coarse Models for Efficient Turbulence Simulation
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Learned Coarse Models for Efficient Turbulence Simulation

Classical numerical solvers used for turbulence simulations are powerful but
computationally expensive

Can fully-learned simulators capture complex, chaotic turbulence accurately at low-
resolutions?
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Our Approach

1. Use classical physics solvers to produce high-resolution trajectories
2. Downsample these trajectories in space and time to produce training data

3. Train a neural network to do next-step prediction on low-resolution frames

Next-step
learned simulator
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U-shaped Stack of Dilated Convolutions

Dilated Convolution
Yu & Koltun (2015)

Keep local structure

Larger perceptual range

Same # parameters @
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U-shaped Stack of Dilated Convolutions

dCNN: U-shaped stack
See also: Ronneberger et al. (2015)

Dilated Convolution
Yu & Koltun (2015)
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Perceptual range at each convolution

Keep local structure 7 dilated convolutions in sequence
Larger perceptual range Gradually increase and decrease range 0
Same # parameters of communication b
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One model — 4 different domains

Domain Generality

1D Kuramoto-Sivashinsky (KS) Equation 3D Uniform Compressible Decaying Turbulence
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Comparison to Coarsened Physics Based Simulator (Athena++)
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Slightly lower pixel-wise error than classical simulator at same (323) resolution during training window

Much better spectral error Athena++ at same (328) and higher (643) resolution (ground truth: 1283) @
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Comparison to Coarsened Physics Based Simulator (Athena++)
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same resolution

Learned model preserves high frequency structure that the classical
Athena++ simulator loses at low resolution
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Running time

e Athena++ Simulator Time (s)
1 4
o Scales O(resolution?) Athena++ 323 iy
o CPU only
Athena++ 643 ~60
Athena++ 1283 ~1000
e |earned model:
o Up to 1000x faster than Model 128° — 32° ~20-30
Athena at 128° Model 1283 — 323 (GPU) | ~1
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Velocity RMSE

Learned Model Comparison
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Our models quantitatively outperform other, more specialized, parameterized models
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Learned Model Comparison
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Our models quantitatively outperform other, more specialized, parameterized models

GT’:’u‘fr“d Dil-ResNet Con-Dil-ResNet  U-Net TF-Net Con-TF-Net FNO (k=8)

However, most learned models do qualitatively pretty well
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Stability

Energy RMS Error

Rollout
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Stability

Energy RMS Error
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Temporal Coarsening

Learned simulators can be trained
on larger timesteps.

Larger timesteps cause larger one-
step loss but can lead to greater
stability

Ground
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RMSE

Generalization to different initial conditions

Generalization to Different Initial Conditions
CompDecay-3D
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Athena++ 32 Generalization to more
Athena++ 64

oi solenoidal but not more

il-ResNet X .

Con-Dil-ResNet compressive components in
the initial conditions.

Adding constraints (conserving Total Energy)
to the loss can help limit generalization error.

O

Stachenfeld, Fielding, Kochkov, Cranmer, Pfaff, Godwin, Cui, Ho, Battaglia, Sanchez-Gonzalez (ICLR 2022)



Part I: Conclusions

e Domain-general coarse-grained learned simulators
o Can capture a variety of types of challenging turbulence
o OQutperform classical models in terms of accuracy and speed
o Especially for preserving high frequency information
e Stability
o Training noise helps
o Temporal downsampling helps
e Generalization
o Constraints help with generalization to different initial conditions
o Dataset augmentation helps with generalization to different box sizes
o Generalization remains a challenge
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Learned Models for Inverse Design
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Learned Models for Inverse Design

Kelsey Tatiana
Allen Guevara-Lopez
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Can learned simulators can be used to solve challenging physical design problems? @
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Design Evaluation & Optimization
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Learned simulator produces a rollout Evaluate reward

=k,

Across design iterations, design parameters are optimized to maximize reward.
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Task Agnostic Model Training with GNNs

GNN -based learned simulators Generalization with GNN simulators
* work for many types of physics

« efficient, accurate, stable Atcdiction

* differentiable, permitting gradient-based design
optimization

* generalize

Training domain

Simulator is pre-trained on next-step prediction with
data qualitatively different from scenes encountered
during design.

2D Fluid Tools 2D Fluid Tools
Training data Example design tasks
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Design Evaluation & Optimization

i
o Design Reward
' function | function
}
Parameterize a design space Learned simulator produces a rollout Evaluate reward

Across design iterations, design parameters are optimized to maximize reward.
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Approaches to Design Optimization

Sampling-based with black- Gradient-based with Gradient-based with
box forward models learned models hand-crafted models
Cross-entropy method Gradient descent with ADAM DAFoam, specialied for

(De Boer et al, 2005) (Kingma & Ba, 2014) aerodynamics

(He et al, 2020)
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ZD Fl“id TOOlS 100 - 1000 particles, 16-36 design dimensions
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2D Fluid Tools

100 - 1000 particles, 16-36 design dimensions

Iteration 0 r=0.73 Iteration O r=0.14 Iteration 0 r=0.05

Gradient-based o ——
optimization O

P P - | A
GD i g

Contain

©
Iteration 0 r=0.62 Iteration O r=0.13 Iteration 0 r=0.05 %
Sampling-based T <
optimization 5'...._....___.__.__.:§
CEM 0 ] e 10 Ramp
" S-S AR O — | VT TP | - .
o A T B Gradient based
] : 87 mm Sampling based
b gl -
©
=
&

Gradient-based optimization finds smoother, more accurate
designs than the sampling-based approach (CEM).
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3D Watercourse 2k - 4k particles, 625 design dimensions

GD

simulator evalu

Gradient-based optimization (GD) with the learned simulator can solve high-dimensional design tasks
where a sampling-based approach (CEM) is intractable. @
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Ail’fOil Shape Optimization ~4k particles, 12 design dimensions

Comparable designs to specialized DAFoam™* Solver
(16-48x faster on a single AI00O GPU than DAFoam on an 8-core workstation)
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Simple tricks like model ensembles can yield an extra level of accuracy.
Note the sharper wing tip, stronger S-shape @

*DAFoam (He et al, AIAA 2020) Allen*, Guevara-Lopez*, Stachenfeld*, Sanchez-Gonzalez, Battaglia, Hamrick, Pfaff (2022)



Stable Gradients over long rollouts

Reward for Different
Rollout Lengths 75 timesteps 225 timesteps 300 timesteps
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Solutions from gradient-based optimization (GD) continue to improve up to 225 timesteps,
and outperform sampling-based CEM up to 275 timesteps.
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Part II: Conclusions

e GNN-based learned simulators can support general-purpose design over a variety of
challenging physical domains
o Problems feature high dimensional, complex state spaces and design spaces
o Useful gradients over 100s of timesteps
e Task-agnostic training on data still permits out-of-distribution design
e Match the accuracy of specialized solvers on airfoil shape optimization
o Solutions obtained efficiently
o Model ensembles can achieve an extra level of high accuracy
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Next directions

e New domains with new, challenging types of physics
e Exploring more robust optimization procedures
e Gradient descent suffers from zero or noisy gradients, local optima
e New models of dynamics and design spaces
o Learned forward models that are better optimized for design tasks
o Rich models of the design space that support hierarchical, compositional design
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