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Private & ConfidentialSimulation

How can Machine Learning be useful for simulation?

● Simulators that…
○ Are more efficient
○ Are differentiable; support efficient engineering & design optimization problems
○ learn from real-world data

Forecasting Engineering & DesignBasic Science

Part I
Part II



Learned Coarse Models for Efficient Turbulence Simulation

Stachenfeld, Fielding, Kochkov, Cranmer, Pfaff, Godwin, Cui, Ho, Battaglia, Sanchez-Gonzalez (ICLR 2022)



Learned Coarse Models for Efficient Turbulence Simulation

Classical numerical solvers used for turbulence simulations are powerful but 
computationally expensive

Can fully-learned simulators capture complex, chaotic turbulence accurately at low-
resolutions?

Stachenfeld, Fielding, Kochkov, Cranmer, Pfaff, Godwin, Cui, Ho, Battaglia, Sanchez-Gonzalez (ICLR 2022)



1. Use classical physics solvers to produce high-resolution trajectories

2. Downsample these trajectories in space and time to produce training data

3. Train a neural network to do next-step prediction on low-resolution frames

Our Approach

Next-step
learned simulator

Stachenfeld, Fielding, Kochkov, Cranmer, Pfaff, Godwin, Cui, Ho, Battaglia, Sanchez-Gonzalez (ICLR 2022)



1. Use classical physics solvers to produce high-resolution trajectories

2. Downsample these trajectories in space and time to produce training data

3. Train a neural network to do next-step prediction on low-resolution frames

4. Evaluate on “rolled out” trajectories

Our Approach

Next-step
learned simulator

…

Add Gaussian 
Noise

Evaluation:

Stachenfeld, Fielding, Kochkov, Cranmer, Pfaff, Godwin, Cui, Ho, Battaglia, Sanchez-Gonzalez (ICLR 2022)
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U-shaped Stack of Dilated Convolutions

Dilated Convolution
Yu & Koltun (2015)

Keep local structure

Larger perceptual range

Same # parameters
Stachenfeld, Fielding, Kochkov, Cranmer, Pfaff, Godwin, Cui, Ho, Battaglia, Sanchez-Gonzalez (ICLR 2022)



U-shaped Stack of Dilated Convolutions

dCNN: U-shaped stack
See also: Ronneberger et al. (2015)

Dilated Convolution
Yu & Koltun (2015)

Keep local structure

Larger perceptual range

Same # parameters

7 dilated convolutions in sequence

Gradually increase and decrease range 
of communication

Perceptual range at each convolution

dCNN

Stachenfeld, Fielding, Kochkov, Cranmer, Pfaff, Godwin, Cui, Ho, Battaglia, Sanchez-Gonzalez (ICLR 2022)



1D Kuramoto-Sivashinsky (KS) Equation

X Velocity Y Velocity PressureZ VelocityDensity

3D Mixing Layer Turbulence with Radiative Cooling
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X Velocity Y Velocity PressureZ VelocityDensity

3D Uniform Compressible Decaying Turbulence
X Velocity

X Velocity Y Velocity Vorticity
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2D Incompressible Turbulence
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Domain Generality
One model → 4 different domains



Comparison to Coarsened Physics Based Simulator (Athena++)

Slightly lower pixel-wise error than classical simulator at same (323) resolution during training window

Much better spectral error Athena++ at same (323) and higher (643) resolution (ground truth: 1283)

Training 
window

Generalization 
window

Stachenfeld, Fielding, Kochkov, Cranmer, Pfaff, Godwin, Cui, Ho, Battaglia, Sanchez-Gonzalez (ICLR 2022)



Comparison to Coarsened Physics Based Simulator (Athena++)

Athena++ 323

Low resolution

Athena++ 643

Intermediate 
resolution

Athena++ 1283

Ground truth
High resolution

Dil-ResNet (323)
Low resolution

Learned model preserves high frequency structure that the classical 
Athena++ simulator loses at low resolution

same resolution

Stachenfeld, Fielding, Kochkov, Cranmer, Pfaff, Godwin, Cui, Ho, Battaglia, Sanchez-Gonzalez (ICLR 2022)



Running time

Simulator Time (s)

Athena++ 323 ~4

Athena++ 643 ~60

Athena++ 1283 ~1000

Model 1283 → 323 ~20-30

Model 1283 → 323 (GPU) ~1

● Athena++
○ Scales O(resolution4)
○ CPU only

● Learned model:
○ Up to 1000x faster than 

Athena at 1283

Stachenfeld, Fielding, Kochkov, Cranmer, Pfaff, Godwin, Cui, Ho, Battaglia, Sanchez-Gonzalez (ICLR 2022)



Learned Model Comparison

Our models quantitatively outperform other, more specialized, parameterized models

Stachenfeld, Fielding, Kochkov, Cranmer, Pfaff, Godwin, Cui, Ho, Battaglia, Sanchez-Gonzalez (ICLR 2022)



Learned Model Comparison

Ground 
Truth

Dil-ResNet U-Net TF-Net Con-TF-NetCon-Dil-ResNet FNO (k=8) FNO

However, most learned models do qualitatively pretty well

Our models quantitatively outperform other, more specialized, parameterized models

Stachenfeld, Fielding, Kochkov, Cranmer, Pfaff, Godwin, Cui, Ho, Battaglia, Sanchez-Gonzalez (ICLR 2022)



Models trained 
without noise can 

be unstable

Energy RMS Error

Stability

Using training noise
improves stability but has 

higher one-step error

Stachenfeld, Fielding, Kochkov, Cranmer, Pfaff, Godwin, Cui, Ho, Battaglia, Sanchez-Gonzalez (ICLR 2022)



Models trained 
without noise can 

be unstable

Energy RMS Error

Stability

No noise Noise 0.01 Ground Truth

Using training noise
improves stability but has 

higher one-step error

Stachenfeld, Fielding, Kochkov, Cranmer, Pfaff, Godwin, Cui, Ho, Battaglia, Sanchez-Gonzalez (ICLR 2022)



Learned model timestep

Learned simulators can be trained 
on larger timesteps.

Temporal Coarsening

1x 2x 4x 8x 16x 32x 64x 128x
Ground 
Truth 256x

Rollout

Energy RMS error 
(trained with noise) 

One-step

Larger timesteps cause larger one-
step loss but can lead to greater 

stability

Stachenfeld, Fielding, Kochkov, Cranmer, Pfaff, Godwin, Cui, Ho, Battaglia, Sanchez-Gonzalez (ICLR 2022)



Generalization to different initial conditions

Generalization to more 
solenoidal but not more 

compressive components in 
the initial conditions.

Adding constraints (conserving Total Energy) 
to the loss can help limit generalization error.

Stachenfeld, Fielding, Kochkov, Cranmer, Pfaff, Godwin, Cui, Ho, Battaglia, Sanchez-Gonzalez (ICLR 2022)



Part I: Conclusions

● Domain-general coarse-grained learned simulators
○ Can capture a variety of types of challenging turbulence 
○ Outperform classical models in terms of accuracy and speed
○ Especially for preserving high frequency information

● Stability
○ Training noise helps
○ Temporal downsampling helps

● Generalization
○ Constraints help with generalization to different initial conditions
○ Dataset augmentation helps with generalization to different box sizes
○ Generalization remains a challenge

Stachenfeld, Fielding, Kochkov, Cranmer, Pfaff, Godwin, Cui, Ho, Battaglia, Sanchez-Gonzalez (ICLR 2022)



Learned Models for Inverse Design
Kelsey 
Allen

Tatiana 
Guevara-Lopez

Allen*, Guevara-Lopez*, Stachenfeld*, Sanchez-Gonzalez, Battaglia, Hamrick, Pfaff (2022)



Learned Models for Inverse Design

Allen*, Smith*, Tenenbaum, PNAS 2020

“HappyGlass”

Human ReasoningInfrastructure Engineering

Kelsey 
Allen

Tatiana 
Guevara-Lopez

Allen*, Guevara-Lopez*, Stachenfeld*, Sanchez-Gonzalez, Battaglia, Hamrick, Pfaff (2022)



Learned Models for Inverse Design

Can learned simulators can be used to solve challenging physical design problems?

Allen*, Smith*, Tenenbaum, PNAS 2020

“HappyGlass”

Human Reasoning

2D Fluid Tools

Allen*, Guevara-Lopez*, Stachenfeld*, Sanchez-Gonzalez, Battaglia, Hamrick, Pfaff (2022)

Kelsey 
Allen

Tatiana 
Guevara-Lopez

Infrastructure Engineering

3D WaterCourse Airfoil Shape Optimization



Design Evaluation & Optimization

Parameterize a design space Learned simulator produces a rollout Evaluate reward

Across design iterations, design parameters are optimized to maximize reward.

… …

Allen*, Guevara-Lopez*, Stachenfeld*, Sanchez-Gonzalez, Battaglia, Hamrick, Pfaff (2022)



Task Agnostic  Model Training with GNNs
GNN -based learned simulators
• work for many types of physics
• efficient, accurate, stable
• differentiable, permitting gradient-based design 

optimization 
• generalize

Allen*, Guevara-Lopez*, Stachenfeld*, Sanchez-Gonzalez, Battaglia, Hamrick, Pfaff (2022)

Pfaff*, Fortunato*, et al, ICLR 2021; 
Sanchez-Gonzalez*, Godwin*, Pfaff*, Ying*, et al, ICML 2020

Generalization with GNN simulators

Simulator is pre-trained on next-step prediction with 
data qualitatively different from scenes encountered 
during design.

2D Fluid Tools 
Training data

2D Fluid Tools 
Example design tasks 



Design Evaluation & Optimization

Parameterize a design space Learned simulator produces a rollout Evaluate reward

Across design iterations, design parameters are optimized to maximize reward.

… …

Allen*, Guevara-Lopez*, Stachenfeld*, Sanchez-Gonzalez, Battaglia, Hamrick, Pfaff (2022)



Approaches to Design Optimization

Cross-entropy method
(De Boer et al, 2005)

DAFoam, specialied for 
aerodynamics

(He et al, 2020)

Gradient descent with ADAM
(Kingma & Ba, 2014)

Gradient-based with 
hand-crafted models

Gradient-based with 
learned models

Sampling-based with black-
box forward models

Allen*, Guevara-Lopez*, Stachenfeld*, Sanchez-Gonzalez, Battaglia, Hamrick, Pfaff (2022)



2D Fluid Tools 100 - 1000 particles, 16-36 design dimensions

Allen*, Guevara-Lopez*, Stachenfeld*, Sanchez-Gonzalez, Battaglia, Hamrick, Pfaff (2022)



2D Fluid Tools

Gradient-based optimization finds smoother, more accurate 
designs than the sampling-based approach (CEM).

100 - 1000 particles, 16-36 design dimensions

Gradient-based
optimization 

GD

Sampling-based
optimization

CEM

Allen*, Guevara-Lopez*, Stachenfeld*, Sanchez-Gonzalez, Battaglia, Hamrick, Pfaff (2022)

Gradient based
Sampling based
Sampling (GT)



3D WaterCourse 2k - 4k particles, 625 design dimensions

Gradient-based optimization (GD) with the learned simulator can solve high-dimensional design tasks
where a sampling-based approach (CEM) is intractable.

Allen*, Guevara-Lopez*, Stachenfeld*, Sanchez-Gonzalez, Battaglia, Hamrick, Pfaff (2022)



Airfoil Shape Optimization ~4k particles, 12 design dimensions

*DAFoam (He et al, AIAA 2020) Allen*, Guevara-Lopez*, Stachenfeld*, Sanchez-Gonzalez, Battaglia, Hamrick, Pfaff (2022)

Comparable designs to specialized DAFoam* Solver 
(16-48x faster on a single A100 GPU than DAFoam on an 8-core workstation)

Simple tricks like model ensembles can yield an extra level of accuracy.
Note the sharper wing tip, stronger S-shape

Single 
model

Ensemble-5



Stable Gradients over long rollouts

75 timesteps 225 timesteps 300 timesteps

75 timesteps 225 timesteps 300 timesteps

Solutions from gradient-based optimization (GD) continue to improve up to 225 timesteps, 
and outperform sampling-based  CEM up to 275 timesteps.

Reward for Different 
Rollout Lengths

Allen*, Guevara-Lopez*, Stachenfeld*, Sanchez-Gonzalez, Battaglia, Hamrick, Pfaff (2022)



Part II: Conclusions

● GNN-based learned simulators can support general-purpose design over a variety of 
challenging physical domains
○ Problems feature high dimensional, complex state spaces and design spaces
○ Useful gradients over 100s of timesteps

● Task-agnostic training on data still permits out-of-distribution design
● Match the accuracy of specialized solvers on airfoil shape optimization

○ Solutions obtained efficiently
○ Model ensembles can achieve an extra level of high accuracy

Allen*, Guevara-Lopez*, Stachenfeld*, Sanchez-Gonzalez, Battaglia, Hamrick, Pfaff (2022)



Next directions

● New domains with new, challenging types of physics
● Exploring more robust optimization procedures

● Gradient descent suffers from zero or noisy gradients, local optima
● New models of dynamics and design spaces

○ Learned forward models that are better optimized for design tasks
○ Rich models of the design space that support hierarchical, compositional design

Espresso Machine
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