


The value of an American-type option is given by

sup
τ∈T

E[g(τ, Xτ )]

where

◮ (Xt)t∈[0,T ] is a d-dimensional Markov process on a probability space (Ω,F ,P)

◮ g : [0, T ]× R
d → R is a function

◮ T is the set of all X -stopping times τ

The decision to stop at time t must be based on X0, . . . , Xt !
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Why do we use machine learning?

◮ Existing methods suffer from the curse of dimensionality and are therefore not

feasible for large d !

Deep learning approach

◮ Learn a candidate optimal stopping time τ̂ : Ω → {0, T/N, ..., T}, i.e.,

for every t ∈ {0, T/N, ..., T} train a neural network ft : R
d → {0, 1} that

decides to stop or not

◮ L = E[g(τ̂ , Xτ̂ )] is a lower bound for supτ E[g(τ, Xτ )]

◮ Calculate a Monte Carlo estimate L̂ = 1

M

∑

M

m=1
Lm for L
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Bermudan max-call options

Consider d assets in a multi-dimensional Black–Scholes model

X
i
t = s

i
0 exp

(

[r − δi − σ
2
i/2]t + σiW

i
t

)

, i ∈ {1, 2, . . . , d},

where si
0 ∈ (0,∞) (initial values), r ∈ R (risk-free interest rate), δi ∈ [0,∞)

(dividend yields), σi ∈ (0,∞) (volatilities), and

(Wt)t∈[0,T ] is a d-dimensional Wiener process.

A Bermudan max-call option has time-t payoff (max1≤i≤d X i
t − K)

+

and can be exercised at one of finitely many times

0 = t0 < t1 =
T

N
< t2 =

2T

N
< · · · < tN = T .

Value: sup
τ∈{t0,t1,...,T}

E

[

e
−rτ

(

max
1≤i≤d

X
i
τ
− K

)+
]
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Numerical results

Parameters: si
0 = 100, σi = 20%, r = 5%, δ = 10%, K = 100, T = 3, N = 9

d L tL U tU Point est. 95% CI Binomial BC 95% CI

2 13.901 27.6 13.903 4.1 13.902 [13.892, 13.932] 13.902

3 18.694 27.9 18.710 4.1 18.702 [18.677, 18.744] 18.69

5 26.145 30.2 26.165 4.3 26.155 [26.126, 26.203] [26.115, 26.164]

10 38.353 32.2 38.357 4.6 38.355 [38.332, 38.401]

20 51.584 37.4 51.796 5.5 51.690 [51.562, 51.856]

30 59.512 43.4 59.802 6.1 59.657 [59.490, 59.869]

50 69.582 55.6 70.008 7.5 69.795 [69.559, 70.101]

100 83.378 90.5 83.779 11.7 83.579 [83.355, 83.860]

200 97.422 161.2 97.767 19.3 97.594 [97.398, 97.851]

500 116.264 450.5 116.645 48.1 116.455 [116.239, 116.733]
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