Deep optimal stopping

January 29, 2019

Sebastian Becker
Zenai AG

Patrick Cheridito
RiskLab, ETH Zurich

Arnulf Jentzen
SAM, ETH Zurich

The value of an American-type option is given by

$$
\sup _{\tau \in \mathcal{T}} \mathbb{E}\left[g\left(\tau, X_{\tau}\right)\right]
$$

The value of an American-type option is given by

$$
\sup _{\tau \in \mathcal{T}} \mathbb{E}\left[g\left(\tau, X_{\tau}\right)\right]
$$

where

- $\left(X_{t}\right)_{t \in[0, T]}$ is a d-dimensional Markov process on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$

The value of an American-type option is given by

$$
\sup _{\tau \in \mathcal{T}} \mathbb{E}\left[g\left(\tau, X_{\tau}\right)\right]
$$

where

- $\left(X_{t}\right)_{t \in[0, T]}$ is a d-dimensional Markov process on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$
$-g:[0, T] \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ is a function

The value of an American-type option is given by

$$
\sup _{\tau \in \mathcal{T}} \mathbb{E}\left[g\left(\tau, X_{\tau}\right)\right]
$$

where

- $\left(X_{t}\right)_{t \in[0, T]}$ is a d-dimensional Markov process on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$
$-g:[0, T] \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ is a function
- \mathcal{T} is the set of all X-stopping times τ

The value of an American-type option is given by

$$
\sup _{\tau \in \mathcal{T}} \mathbb{E}\left[g\left(\tau, X_{\tau}\right)\right]
$$

where

- $\left(X_{t}\right)_{t \in[0, T]}$ is a d-dimensional Markov process on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$
$-g:[0, T] \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ is a function
- \mathcal{T} is the set of all X-stopping times τ

The decision to stop at time t must be based on X_{0}, \ldots, X_{t} !

Why do we use machine learning?

Why do we use machine learning?

- Existing methods suffer from the curse of dimensionality and are therefore not feasible for large d !

Why do we use machine learning?

- Existing methods suffer from the curse of dimensionality and are therefore not feasible for large d !

Deep learning approach

Why do we use machine learning?

- Existing methods suffer from the curse of dimensionality and are therefore not feasible for large d !

Deep learning approach

- Learn a candidate optimal stopping time $\hat{\tau}: \Omega \rightarrow\{0, T / N, \ldots, T\}$, i.e., for every $t \in\{0, T / N, \ldots, T\}$ train a neural network $f_{t}: \mathbb{R}^{d} \rightarrow\{0,1\}$ that decides to stop or not

Why do we use machine learning?

- Existing methods suffer from the curse of dimensionality and are therefore not feasible for large d !

Deep learning approach

- Learn a candidate optimal stopping time $\hat{\tau}: \Omega \rightarrow\{0, T / N, \ldots, T\}$, i.e., for every $t \in\{0, T / N, \ldots, T\}$ train a neural network $f_{t}: \mathbb{R}^{d} \rightarrow\{0,1\}$ that decides to stop or not
- $L=\mathbb{E}\left[g\left(\hat{\tau}, X_{\hat{\tau}}\right)\right]$ is a lower bound for $\sup _{\tau} \mathbb{E}\left[g\left(\tau, X_{\tau}\right)\right]$

Why do we use machine learning?

- Existing methods suffer from the curse of dimensionality and are therefore not feasible for large d !

Deep learning approach

- Learn a candidate optimal stopping time $\hat{\tau}: \Omega \rightarrow\{0, T / N, \ldots, T\}$, i.e., for every $t \in\{0, T / N, \ldots, T\}$ train a neural network $f_{t}: \mathbb{R}^{d} \rightarrow\{0,1\}$ that decides to stop or not
- $L=\mathbb{E}\left[g\left(\hat{\tau}, X_{\hat{\tau}}\right)\right]$ is a lower bound for $\sup _{\tau} \mathbb{E}\left[g\left(\tau, X_{\tau}\right)\right]$
- Calculate a Monte Carlo estimate $\hat{L}=\frac{1}{M} \sum_{m=1}^{M} L_{m}$ for L

Why do we use machine learning?

- Existing methods suffer from the curse of dimensionality and are therefore not feasible for large d !

Deep learning approach

- Learn a candidate optimal stopping time $\hat{\tau}: \Omega \rightarrow\{0, T / N, \ldots, T\}$, i.e., for every $t \in\{0, T / N, \ldots, T\}$ train a neural network $f_{t}: \mathbb{R}^{d} \rightarrow\{0,1\}$ that decides to stop or not
- $L=\mathbb{E}\left[g\left(\hat{\tau}, X_{\hat{\tau}}\right)\right]$ is a lower bound for $\sup _{\tau} \mathbb{E}\left[g\left(\tau, X_{\tau}\right)\right]$
- Calculate a Monte Carlo estimate $\hat{L}=\frac{1}{M} \sum_{m=1}^{M} L_{m}$ for L

Bermudan max-call options

Bermudan max-call options

Consider d assets in a multi-dimensional Black-Scholes model

$$
X_{t}^{i}=s_{0}^{i} \exp \left(\left[r-\delta_{i}-\sigma_{i}^{2} / 2\right] t+\sigma_{i} W_{t}^{i}\right), \quad i \in\{1,2, \ldots, d\}
$$

Bermudan max-call options

Consider d assets in a multi-dimensional Black-Scholes model

$$
X_{t}^{i}=s_{0}^{i} \exp \left(\left[r-\delta_{i}-\sigma_{i}^{2} / 2\right] t+\sigma_{i} W_{t}^{i}\right), \quad i \in\{1,2, \ldots, d\}
$$

where $s_{0}^{i} \in(0, \infty)$ (initial values)

Bermudan max-call options

Consider d assets in a multi-dimensional Black-Scholes model

$$
X_{t}^{i}=s_{0}^{i} \exp \left(\left[r-\delta_{i}-\sigma_{i}^{2} / 2\right] t+\sigma_{i} W_{t}^{i}\right), \quad i \in\{1,2, \ldots, d\}
$$

where $s_{0}^{i} \in(0, \infty)$ (initial values), $r \in \mathbb{R}$ (risk-free interest rate)

Bermudan max-call options

Consider d assets in a multi-dimensional Black-Scholes model

$$
X_{t}^{i}=s_{0}^{i} \exp \left(\left[r-\delta_{i}-\sigma_{i}^{2} / 2\right] t+\sigma_{i} W_{t}^{i}\right), \quad i \in\{1,2, \ldots, d\}
$$

where $s_{0}^{i} \in(0, \infty)$ (initial values), $r \in \mathbb{R}$ (risk-free interest rate), $\delta_{i} \in[0, \infty)$ (dividend yields)

Bermudan max-call options

Consider d assets in a multi-dimensional Black-Scholes model

$$
X_{t}^{i}=s_{0}^{i} \exp \left(\left[r-\delta_{i}-\sigma_{i}^{2} / 2\right] t+\sigma_{i} W_{t}^{i}\right), \quad i \in\{1,2, \ldots, d\}
$$

where $s_{0}^{i} \in(0, \infty)$ (initial values), $r \in \mathbb{R}$ (risk-free interest rate), $\delta_{i} \in[0, \infty)$ (dividend yields), $\sigma_{i} \in(0, \infty)$ (volatilities)

Bermudan max-call options

Consider d assets in a multi-dimensional Black-Scholes model

$$
X_{t}^{i}=s_{0}^{i} \exp \left(\left[r-\delta_{i}-\sigma_{i}^{2} / 2\right] t+\sigma_{i} W_{t}^{i}\right), \quad i \in\{1,2, \ldots, d\}
$$

where $s_{0}^{i} \in(0, \infty)$ (initial values), $r \in \mathbb{R}$ (risk-free interest rate), $\delta_{i} \in[0, \infty)$ (dividend yields), $\sigma_{i} \in(0, \infty)$ (volatilities), and $\left(W_{t}\right)_{t \in[0, T]}$ is a d-dimensional Wiener process.

Bermudan max-call options

Consider d assets in a multi-dimensional Black-Scholes model

$$
X_{t}^{i}=s_{0}^{i} \exp \left(\left[r-\delta_{i}-\sigma_{i}^{2} / 2\right] t+\sigma_{i} W_{t}^{i}\right), \quad i \in\{1,2, \ldots, d\}
$$

where $s_{0}^{i} \in(0, \infty)$ (initial values), $r \in \mathbb{R}$ (risk-free interest rate), $\delta_{i} \in[0, \infty)$ (dividend yields), $\sigma_{i} \in(0, \infty)$ (volatilities), and $\left(W_{t}\right)_{t \in[0, T]}$ is a d-dimensional Wiener process.

A Bermudan max-call option has time-t payoff $\left(\max _{1 \leq i \leq d} X_{t}^{i}-K\right)^{+}$

Bermudan max-call options

Consider d assets in a multi-dimensional Black-Scholes model

$$
X_{t}^{i}=s_{0}^{i} \exp \left(\left[r-\delta_{i}-\sigma_{i}^{2} / 2\right] t+\sigma_{i} W_{t}^{i}\right), \quad i \in\{1,2, \ldots, d\}
$$

where $s_{0}^{i} \in(0, \infty)$ (initial values), $r \in \mathbb{R}$ (risk-free interest rate), $\delta_{i} \in[0, \infty)$ (dividend yields), $\sigma_{i} \in(0, \infty)$ (volatilities), and $\left(W_{t}\right)_{t \in[0, T]}$ is a d-dimensional Wiener process.

A Bermudan max-call option has time- t payoff $\left(\max _{1 \leq i \leq d} X_{t}^{i}-K\right)^{+}$ and can be exercised at one of finitely many times
$0=t_{0}<t_{1}=\frac{T}{N}<t_{2}=\frac{2 T}{N}<\cdots<t_{N}=T$.

Bermudan max-call options

Consider d assets in a multi-dimensional Black-Scholes model

$$
X_{t}^{i}=s_{0}^{i} \exp \left(\left[r-\delta_{i}-\sigma_{i}^{2} / 2\right] t+\sigma_{i} W_{t}^{i}\right), \quad i \in\{1,2, \ldots, d\}
$$

where $s_{0}^{i} \in(0, \infty)$ (initial values), $r \in \mathbb{R}$ (risk-free interest rate), $\delta_{i} \in[0, \infty)$ (dividend yields), $\sigma_{i} \in(0, \infty)$ (volatilities), and $\left(W_{t}\right)_{t \in[0, T]}$ is a d-dimensional Wiener process.

A Bermudan max-call option has time-t payoff $\left(\max _{1 \leq i \leq d} X_{t}^{i}-K\right)^{+}$ and can be exercised at one of finitely many times
$0=t_{0}<t_{1}=\frac{T}{N}<t_{2}=\frac{2 T}{N}<\cdots<t_{N}=T$.
Value: $\sup _{\tau \in\left\{t_{0}, t_{1}, \ldots, T\right\}} \mathbb{E}\left[e^{-r \tau}\left(\max _{1 \leq i \leq d} X_{\tau}^{i}-K\right)^{+}\right]$

Numerical results

Numerical results

Parameters: $s_{0}^{i}=100, \sigma_{i}=20 \%, r=5 \%, \delta=10 \%, K=100, T=3, N=9$

Numerical results

Parameters: $s_{0}^{i}=100, \sigma_{i}=20 \%, r=5 \%, \delta=10 \%, K=100, T=3, N=9$

d	L	t_{L}	U	t_{U}	Point est.	$95 \% \mathrm{Cl}$	Binomial	$\mathrm{BC} 95 \% \mathrm{Cl}$

Numerical results

Parameters: $s_{0}^{i}=100, \sigma_{i}=20 \%, r=5 \%, \delta=10 \%, K=100, T=3, N=9$

d	L	t_{L}	U	t_{U}	Point est.	$95 \% \mathrm{Cl}$	Binomial	$B C 95 \% \mathrm{Cl}$
2	13.901	27.6	13.903	4.1	13.902	$[13.892,13.932]$	13.902	

Numerical results

Parameters: $s_{0}^{i}=100, \sigma_{i}=20 \%, r=5 \%, \delta=10 \%, K=100, T=3, N=9$

d	L	t_{L}	U	t_{U}	Point est.	$95 \% \mathrm{Cl}$	Binomial	$B C 95 \% \mathrm{Cl}$
2	13.901	27.6	13.903	4.1	13.902	$[13.892,13.932]$	13.902	
3	18.694	27.9	18.710	4.1	18.702	$[18.677,18.744]$	18.69	

Numerical results

Parameters: $s_{0}^{i}=100, \sigma_{i}=20 \%, r=5 \%, \delta=10 \%, K=100, T=3, N=9$

d	L	t_{L}	U	t_{U}	Point est.	$95 \% \mathrm{Cl}$	Binomial	$\mathrm{BC} 95 \% \mathrm{Cl}$
2	13.901	27.6	13.903	4.1	13.902	$[13.892,13.932]$	13.902	
3	18.694	27.9	18.710	4.1	18.702	$[18.677,18.744]$	18.69	
5	26.145	30.2	26.165	4.3	26.155	$[26.126,26.203]$		$[26.115,26.164]$

Numerical results

Parameters: $s_{0}^{i}=100, \sigma_{i}=20 \%, r=5 \%, \delta=10 \%, K=100, T=3, N=9$

d	L	t_{L}	U	t_{U}	Point est.	$95 \% \mathrm{Cl}$	Binomial	$\mathrm{BC} 95 \% \mathrm{Cl}$
2	13.901	27.6	13.903	4.1	13.902	$[13.892,13.932]$	13.902	
3	18.694	27.9	18.710	4.1	18.702	$[18.677,18.744]$	18.69	
5	26.145	30.2	26.165	4.3	26.155	$[26.126,26.203]$		$[26.115,26.164]$
10	38.353	32.2	38.357	4.6	38.355	$[38.332,38.401]$		
20	51.584	37.4	51.796	5.5	51.690	$[51.562,51.856]$		
30	59.512	43.4	59.802	6.1	59.657	$[59.490,59.869]$		
50	69.582	55.6	70.008	7.5	69.795	$[69.559,70.101]$		
100	83.378	90.5	83.779	11.7	83.579	$[83.355,83.860]$		
200	97.422	161.2	97.767	19.3	97.594	$[97.398,97.851]$		
500	116.264	450.5	116.645	48.1	116.455	$[116.239,116.733]$		

