Deep optimal stopping

January 29, 2019

Sebastian Becker Zenai AG Patrick Cheridito RiskLab, ETH Zurich Arnulf Jentzen SAM, ETH Zurich

 $\sup_{\tau \in \mathcal{T}} \mathbb{E}[g(\tau, \textit{X}_{\tau})]$

(X_t)_{$t \in [0, T]} is a <math>q$ -dimensional Markov process on a probability space ($\Omega, \mathcal{F}, \mathbb{P}$ </sub>

 $lacksymbol{arphi} g \colon [0,T] imes \mathbb{R}^d o \mathbb{R}$ is a function

 $\sim {\cal T}$ is the set of all X stopping times au

The decision to stop at time t must be based on X_0, \ldots, X_t !

 $\sup_{\tau \in \mathcal{T}} \mathbb{E}[g(\tau, \textit{X}_{\tau})]$

where

► $(X_t)_{t \in [0,T]}$ is a *d*-dimensional Markov process on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$

 $\blacktriangleright g \colon [0,\underline{T}] \times \mathbb{R}^{d} \to \mathbb{R}$ is a function

 $-{\mathcal T}$ is the set of all X stopping times au

The decision to stop at time t must be based on X_0, \ldots, X_t !

 $\sup_{\tau \in \mathcal{T}} \mathbb{E}[g(\tau, X_{\tau})]$

where

• $(X_t)_{t \in [0,T]}$ is a *d*-dimensional Markov process on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$

▶ $g \colon [0, T] \times \mathbb{R}^d \to \mathbb{R}$ is a function

 $\sim \mathcal{T}$ is the set of all X stopping times au

The decision to stop at time t must be based on X_0, \ldots, X_t !

 $\sup_{\tau \in \mathcal{T}} \mathbb{E}[g(\tau, X_{\tau})]$

where

- $(X_t)_{t \in [0,T]}$ is a *d*-dimensional Markov process on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$
- ▶ $g \colon [0, T] \times \mathbb{R}^d \to \mathbb{R}$ is a function
- \mathcal{T} is the set of all *X*-stopping times τ

The decision to stop at time t must be based on X_0, \ldots, X_t !

 $\sup_{\tau \in \mathcal{T}} \mathbb{E}[g(\tau, \textit{X}_{\tau})]$

where

► $(X_t)_{t \in [0,T]}$ is a *d*-dimensional Markov process on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$

▶ $g \colon [0, T] \times \mathbb{R}^d \to \mathbb{R}$ is a function

• \mathcal{T} is the set of all *X*-stopping times au

The decision to stop at time *t* must be based on X_0, \ldots, X_t !

Existing methods suffer from the curse of dimensionality and are therefore not feasible for large d!

Deep learning approach

- Learn a candidate optimal stopping time $\hat{\tau} : \Omega \to \{0, \tau/n, ..., T\}$, i.e., for every $t \in \{0, \tau/n, ..., T\}$ train a neural network $f_t : \mathbb{R}^d \to \{0, 1\}$ that decides to stop or not
 - $L = \mathbb{E}[g(\hat{ au}, X_{\hat{ au}})]$ is a lower bound for $\sup_{ au} \mathbb{E}[g(au, X_{ au})]$
 - **Calculate a Monte Carlo estimate** $\hat{L} = \frac{1}{M} \sum_{m=1}^{M} L_m$ for L

Existing methods suffer from the curse of dimensionality and are therefore not feasible for large d!

Deep learning approach

- Learn a candidate optimal stopping time $\hat{\tau} : \Omega \to \{0, \tau/\nu, ..., T\}$, i.e., for every $t \in \{0, 0/\nu, ..., T\}$ train a neural network $f_t : \mathbb{R}^d \to \{0, 1\}$ that decides to stop or not
 - $L = \mathbb{E}[g(\hat{ au}, X_{\hat{ au}})]$ is a lower bound for $\sup_{ au} \mathbb{E}[g(au, X_{ au})]$. R
 - Calculate a Monte Carlo estimate $\hat{L} = \frac{1}{M} \sum_{m=1}^{M} L_m$ for L

Existing methods suffer from the curse of dimensionality and are therefore not feasible for large d!

Deep learning approach

- Learn a candidate optimal stopping time $\hat{\tau} : \Omega \to \{0, T/N, ..., T\}$, i.e., for every $t \in \{0, T/N, ..., T\}$ train a neural network $f_t : \mathbb{R}^d \to \{0, 1\}$ that decides to stop or not
 - $L = \mathbb{E}[g(\hat{ au}, X_{\hat{ au}})]$ is a lower bound for $\sup_{ au} \mathbb{E}[g(au, X_{ au})]$.

• Calculate a Monte Carlo estimate $\hat{L} = \frac{1}{M} \sum_{m=1}^{M} L_m$ for L

Existing methods suffer from the curse of dimensionality and are therefore not feasible for large d!

Deep learning approach

Learn a candidate optimal stopping time τ̂: Ω → {0, ^T/N, ..., T}, i.e., for every t ∈ {0, ^T/N, ..., T} train a neural network f_t: ℝ^d → {0, 1} that decides to stop or not

 $L = \mathbb{E}[g(\hat{ au}, X_{\hat{ au}})]$ is a lower bound for $\sup_{ au} \mathbb{E}[g(au, X_{ au})]$.

Calculate a Monte Carlo estimate $\hat{L} = \frac{1}{M} \sum_{m=1}^{M} L_m$ for L

Existing methods suffer from the curse of dimensionality and are therefore not feasible for large d!

Deep learning approach

- Learn a candidate optimal stopping time τ̂: Ω → {0, ^T/N, ..., T}, i.e., for every t ∈ {0, ^T/N, ..., T} train a neural network f_t: ℝ^d → {0, 1} that decides to stop or not
- $L = \mathbb{E}[g(\hat{ au}, X_{\hat{ au}})]$ is a lower bound for $\sup_{ au} \mathbb{E}[g(au, X_{ au})]$

Calculate a Monte Carlo estimate $\hat{L} = \frac{1}{M} \sum_{m=1}^{M} L_m$ for L

Existing methods suffer from the curse of dimensionality and are therefore not feasible for large d!

Deep learning approach

- Learn a candidate optimal stopping time τ̂: Ω → {0, ^T/N, ..., T}, i.e., for every t ∈ {0, ^T/N, ..., T} train a neural network f_t: ℝ^d → {0, 1} that decides to stop or not
- $L = \mathbb{E}[g(\hat{ au}, X_{\hat{ au}})]$ is a lower bound for $\sup_{ au} \mathbb{E}[g(au, X_{ au})]$
- Calculate a Monte Carlo estimate $\hat{L} = \frac{1}{M} \sum_{m=1}^{M} L_m$ for L

Existing methods suffer from the curse of dimensionality and are therefore not feasible for large d!

Deep learning approach

- Learn a candidate optimal stopping time τ̂: Ω → {0, ^T/N, ..., T}, i.e., for every t ∈ {0, ^T/N, ..., T} train a neural network f_t: ℝ^d → {0, 1} that decides to stop or not
- $L = \mathbb{E}[g(\hat{ au}, X_{\hat{ au}})]$ is a lower bound for $\sup_{ au} \mathbb{E}[g(au, X_{ au})]$
- Calculate a Monte Carlo estimate $\hat{L} = \frac{1}{M} \sum_{m=1}^{M} L_m$ for L

Consider d assets in a multi-dimensional Black-Scholes model

$$X_t^i = s_0^i \exp\left([r - \delta_i - \sigma_i^2/2]t + \sigma_i W_t^i\right), \quad i \in \{1, 2, \dots, d\},$$

where $\mathbf{s}_0^i \in (0, \infty)$ (initial values), $r \in \mathbb{R}$ (risk-free interest rate), $\delta_l \in [0, \infty)$ (dividend yields), $\sigma_l \in (0, \infty)$ (volatilities), and $(W_l)_{l \in [0, T]}$ is a *d*-dimensional Wiener process.

A Bermudan max-call option has time-t payoff (max_{1 $\leq i \leq d$} X¹_t - and can be exercised at one of finitely many times

$$= t_0 < t_1 = \frac{T}{N} < t_2 = 3\frac{2T}{N} < \dots < t_N = T.$$
Value:
$$\sum_{\substack{\tau \in \{t_0, t_1, \dots, T\}}}^{l} \mathbb{E} \left[e^{-r\tau} \left(\max_{\substack{1 \le t \le d}} X_{\tau}^t - K \right) \right]$$

ZENAI

Consider *d* assets in a multi-dimensional Black–Scholes model

$$X_t^i = s_0^i \exp\left([r-\delta_i-\sigma_i^2/2]t+\sigma_i W_t^i
ight), \quad i\in\{1,2,\ldots,d\},$$

where $s_0 \in (0, \infty)$ (initial values), $r \in \mathbb{R}$ (risk-free interest rate), $\delta_t \in [0, \infty)$ (dividend yields), $\sigma_t \in (0, \infty)$ (volatilities), and $(W_t)_{t \in [0, T]}$ is a *d*-dimensional Wiener process.

A Bermudan max-call option has time-*t* payoff (max_{1 $\leq i \leq d$} X_t^i – and can be exercised at one of finitely many times

$$= t_0 < t_1 = \frac{T}{N} < t_2 = \frac{2T}{N} < \dots < t_N = T.$$
Value:
$$\sup_{\tau \in \{b, h, \dots, T\}} \mathbb{E}\left[e^{-r\tau} \left(\max_{1 \le l \le d} X_{\tau}^l - K\right)\right]$$

Consider d assets in a multi-dimensional Black–Scholes model

$$X_t^i = s_0^i \expig([r-\delta_i-\sigma_i^2/2]t+\sigma_i W_t^iig)\,, \quad i\in\{1,2,\ldots,d\},$$

where $s_0^i \in (0,\infty)$ (initial values) $r \in \mathbb{R}$ (risk-free interest rate), $\delta_r \in [0,\infty)$ (dividend yields) $\sigma_r \in [0,\infty)$ (volatilities), and (W₁) so r is a σ -dimensional Wiener process

A Bermudan max-call option has time-*t* payoff (max_{1 $\leq i \leq d$} X^I_t - and can be exercised at one of finitely many times

$$= t_0 < t_1 \stackrel{\perp}{=} \frac{T}{N} < t_2 = 3 \frac{2T}{N} < \dots < t_N = T.$$
Value:
$$\sum_{\tau \in \{t_0, t_1, \dots, T\}} \mathbb{E} \left[e^{-r\tau} \left(\max_{1 \le l \le d} X_{\tau}^l - K \right) \right]$$

Consider d assets in a multi-dimensional Black–Scholes model

$$X_t^i = s_0^i \exp \left([r - \delta_i - \sigma_i^2/2]t + \sigma_i W_t^i
ight), \quad i \in \{1, 2, \dots, d\},$$

where $s_0^i \in (0,\infty)$ (initial values), $r \in \mathbb{R}$ (risk-free interest rate)

A Bermudan max-call option has time-t payoff (max_{1 $\leq l \leq d$} X_l^t – and can be exercised at one of finitely many times

$$= t_0 < t_1 \stackrel{\perp}{=} \frac{T}{N} < t_2 \stackrel{\geq}{=} \frac{2T}{N} < \dots < t_N = T.$$
Value:
$$\sum_{\tau \in \{t_0, t_1, \dots, T\}} \mathbb{E} \left[e^{-\tau \tau} \left(\max_{1 \le l \le d} X_{\tau}^l - K \right) \right]$$

Consider d assets in a multi-dimensional Black–Scholes model

$$X_t^i = s_0^i \exp\left([r - \delta_i - \sigma_i^2/2]t + \sigma_i W_t^i
ight), \quad i \in \{1, 2, \dots, d\},$$

where $s_0^i \in (0,\infty)$ (initial values), $r \in \mathbb{R}$ (risk-free interest rate), $\delta_i \in [0,\infty)$ (dividend yields)

 W_t)_{t \in [0, T]} is a *d*-dimensional Wiener process.

A Bermudan max-call option has time-*t* payoff (max_{1 $\leq l \leq d} X_l^l$ – and can be exercised at one of finitely many times</sub>

$$= t_0 < t_1 \stackrel{\perp}{=} \frac{T}{N} < t_2 \stackrel{\sim}{=} \frac{2T}{N} < \dots < t_N = T.$$

$$\int_{\mathbf{V}} \sum_{\mathbf{v} \in \{t_0, t_1, \dots, T\}} \mathbb{E} \left[e^{-r\tau} \left(\max_{1 \le l \le d} X_{\tau}^l - l \right) \right]$$

Consider d assets in a multi-dimensional Black–Scholes model

$$X_t^i = s_0^i \exp\left([r - \delta_i - \sigma_i^2/2]t + \sigma_i W_t^i
ight), \quad i \in \{1, 2, \dots, d\},$$

where $s_0^i \in (0,\infty)$ (initial values), $r \in \mathbb{R}$ (risk-free interest rate), $\delta_i \in [0,\infty)$ (dividend yields), $\sigma_i \in (0,\infty)$ (volatilities) and

A Bermudan max-call option has time-*t* payoff (max_{1≤*l*≤*d*} $X_t^l - K$ and can be exercised at one of finitely many times $0 = t_0 < t_1 = \frac{T}{N} < t_2 = 3\frac{2T}{N} < \cdots < t_N = T.$ Value: $\sum_{\tau \in \{t_0, t_1, \dots, T\}} \mathbb{E}\left[e^{-r\tau} \left(\max_{1 \le l \le d} X_{\tau}^l - K\right)\right]$

Consider d assets in a multi-dimensional Black–Scholes model

$$X_t^i = s_0^i \exp\left([r - \delta_i - \sigma_i^2/2]t + \sigma_i W_t^i
ight), \quad i \in \{1, 2, \dots, d\},$$

where $s_0^i \in (0,\infty)$ (initial values), $r \in \mathbb{R}$ (risk-free interest rate), $\delta_i \in [0,\infty)$ (dividend yields), $\sigma_i \in (0,\infty)$ (volatilities), and $(W_t)_{t \in [0,T]}$ is a *d*-dimensional Wiener process.

A Bermudan max-call option has time-*t* payoff $(\max_{1 \le l \le d} X_t^l - k)$ and can be exercised at one of finitely many times $\mathbf{0} = t_0 < t_1 = \frac{T}{N} < t_2 = \frac{2T}{N} < \dots < t_N = T.$ Value: $\sup_{T \in \{b_1, t_1, \dots, T\}} \mathbb{E}\left[e^{-tT}\left(\max_{1 \le l \le d} X_T^l - K\right)\right]$

Consider *d* assets in a multi-dimensional Black–Scholes model

$$X_t^i = s_0^i \exp\left([r - \delta_i - \sigma_i^2/2]t + \sigma_i W_t^i
ight), \quad i \in \{1, 2, \dots, d\},$$

where $s_0^i \in (0,\infty)$ (initial values), $r \in \mathbb{R}$ (risk-free interest rate), $\delta_i \in [0,\infty)$ (dividend yields), $\sigma_i \in (0,\infty)$ (volatilities), and $(W_t)_{t \in [0,T]}$ is a *d*-dimensional Wiener process.

A Bermudan max-call option has time-*t* payoff $(\max_{1 \le i \le d} X_t^i - K)^+$

Consider *d* assets in a multi-dimensional Black–Scholes model

$$X_t^i = s_0^i \expig([r-\delta_i-\sigma_i^2/2]t+\sigma_i W_t^iig)\,, \quad i\in\{1,2,\ldots,d\},$$

where $s_0^i \in (0,\infty)$ (initial values), $r \in \mathbb{R}$ (risk-free interest rate), $\delta_i \in [0,\infty)$ (dividend yields), $\sigma_i \in (0,\infty)$ (volatilities), and $(W_t)_{t \in [0,T]}$ is a *d*-dimensional Wiener process.

A Bermudan max-call option has time-*t* payoff $(\max_{1 \le i \le d} X_t^i - K)^+$ and can be exercised at one of finitely many times $0 = t_0 < t_1 = \frac{T}{N} < t_2 = \frac{2T}{N} < \cdots < t_N = T.$

Consider *d* assets in a multi-dimensional Black–Scholes model

$$X_t^i = s_0^i \expig([r-\delta_i-\sigma_i^2/2]t+\sigma_i W_t^iig)\,, \quad i\in\{1,2,\ldots,d\},$$

where $s_0^i \in (0,\infty)$ (initial values), $r \in \mathbb{R}$ (risk-free interest rate), $\delta_i \in [0,\infty)$ (dividend yields), $\sigma_i \in (0,\infty)$ (volatilities), and $(W_t)_{t \in [0,T]}$ is a *d*-dimensional Wiener process.

A Bermudan max-call option has time-*t* payoff $(\max_{1 \le i \le d} X_t^i - K)^+$ and can be exercised at one of finitely many times $0 = t_0 < t_1 = \frac{T}{N} < t_2 = \frac{2T}{N} < \dots < t_N = T.$ Value: $\sup_{\tau \in \{t_0, t_1, \dots, T\}} \mathbb{E} \left[e^{-r\tau} \left(\max_{1 \le i \le d} X_{\tau}^i - K \right)^+ \right]$

d	L	tL	U	tυ	Point est.	95% CI	Binomial	BC 95 $\%$ CI
2	13.901	27.6	113.903	4.1	13.902	[13.892, 13.932]	13.902	

d	L	t.	U	tu	Point est.	95% CI	Binomial	BC 95% CI
2	13.901	27.6	13.903	4.1	13.902	[13.892, 13.932]	13.902	

d	L	tL	U	tυ	Point est.	95% CI	Binomial	BC 95 $\%$ CI
2	13.901	27.6	13.903	4.1	13.902	[13.892, 13.932]	13.902	
3	18.694	27.9	18.710	4.1	18.702	[18.677, 18.744]	18.69	

d	L	tL	U	tu	Point est.	95% CI	Binomial	BC 95% CI
2	13.901	27.6	13.903	4.1	13.902	[13.892, 13.932]	13.902	
3	18.694	27.9	18.710	4.1	18.702	[18.677, 18.744]	18.69	
5	26.145	30.2	26.165	4.3	26.155	[26.126, 26.203]		[26.115, 26.164]

BC 95 $\%$ CI	Binomial	95% CI	Point est.	tu	U	tL	L	d
	13.902	[13.892, 13.932]	13.902	4.1	13.903	27.6	13.901	2
	18.69	[18.677, 18.744]	18.702	4.1	18.710	27.9	18.694	3
[26.115, 26.164]		[26.126, 26.203]	26.155	4.3	26.165	30.2	26.145	5
		[38.332, 38.401]	38.355	4.6	38.357	32.2	38.353	10
		[51.562, 51.856]	51.690	5.5	51.796	37.4	51.584	20
		[59.490, 59.869]	59.657	6.1	59.802	43.4	59.512	30
		[69.559, 70.101]	69.795	7.5	70.008	55.6	69.582	50
		[83.355, 83.860]	83.579	11.7	83.779	90.5	83.378	100
		[97.398, 97.851]	97.594	19.3	97.767	161.2	97.422	200
		[116.239, 116.733]	116.455	48.1	116.645	450.5	116.264	500

ZENA

zenai.ch info@zenai.ch