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•  Gleason score predictive of patient 
prognosis 

 
•  Tedious work 
•  High inter-pathologist variability 

•  Project goal: Gleason score 
assignment by machine learning 
Ø  fast and reproducible annotations 
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Obtaining ground-truth annotations 

Benign Pattern 3 Pattern 4 Pattern 5 

§  Domain-expert Gleason annotations 
    on ~ 900 Tissue MicroArray (TMA) images 
      
 

K. Fricker 
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Model training on small image patches 

Pattern 3 Pattern 4 •  Training cohort: 641 TMA images 

•  Extract training examples 
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•  Train a Gleason pattern classifier 
 

 
Gleason pattern 

prediction  

Benign 

Pattern 4 
Pattern 5 

Pattern 3 

•  MobileNet (Howard et al., 2017) 
•  Fine-tuning from ImageNet  

•  Data augmentation 
•  Class-balanced 
     mini-batches 
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Trained model used to imitate pathologist workflow  

Pixel-level annotation 

Gleason score 7 = 3+4 

convolutional neural network 

Benign Gleason 3 

Gleason 4 Gleason 5 

Arvaniti E. et al., Scientific Reports (2018) 
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Test cohort results: image-level agreement 
 
Test cohort: 245 TMA images 

0 

1 
0.75 

Cohen’s κ: agreement rate 

0.71 

random 

perfect 
agreement 

κ 

0.71 

29.01.19 Eirini Arvaniti 20 

K. Fricker J. Rüschoff 

Arvaniti E. et al., Scientific Reports (2018) 
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Highlighting Gleason-pattern-discriminative regions  

Focus regions for Gleason pattern 3 predictions 

input patch model focus focus regions 

•  Model focus obtained by 
    Class Activation Mapping 
    (Zhou et al., CVPR, 2016) 
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Can we reduce the need for 
detailed pathologist annotations? 
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Ø Global-level (weak) annotations often 
available 

Global-level label: e.g. Gleason 7 Can we reduce the need for 
detailed pathologist annotations? 
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Can we reduce the need for 
detailed pathologist annotations? 

Ø Global-level (weak) annotations often 
available 

 
Ø We can learn from such weak annotations 
      

Global-level label: e.g. Gleason 7 
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Training with both local- and global-level annotations 
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Local 
annotations 

Global (weak) 
annotation 

Arvaniti E. et al., Medical Imaging meets NeurIPS 2018 
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ypred  yglobal 

minimize:  w * Loss(ypred, yglobal) 

0 ≤ w ≤ 1

w: predicted probability  
     for the given (weak) label.    

Local 
annotations 

Arvaniti E. et al., Medical Imaging meets NeurIPS 2018 

Global (weak) 
annotation 
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Weighted weak supervision outperforms simpler approaches  

local labels 

Ø  Task: classify low vs high Gleason score cases from 
               The Cancer Genome Atlas (TCGA) whole-slide images. 
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Weighted weak supervision outperforms simpler approaches  

local & global labels 

local &  
weighted global labels local labels global labels 

Ø  Task: classify low vs high Gleason score cases from 
               The Cancer Genome Atlas (TCGA) whole-slide images. 
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§  Automated Gleason grading with machine learning 
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Summary & Outlook 

Thank you for your attention! 


