ETH zürich

Deep learning for automated grading of prostate cancer histopathology images

> Applied Machine Learning Days 2019 AI & Health

Eirini Arvaniti

ETH Zurich Institute of Molecular Systems Biology

PhD supervisor: Manfred Claassen

University Hospital Zurich Institute of Pathology and Molecular Pathology

Peter Wild Kim Fricker

Jan Rüschoff

Acknowledgements

Gleason grading system for prostate cancer

Gleason grading system for prostate cancer

Gleason score predictive of patient prognosis

- Gleason score predictive of patient prognosis
- Tedious work
- High inter-pathologist variability

Gleason 7 = 3+4

- Gleason score predictive of patient prognosis
- Tedious work
- High inter-pathologist variability
- Project goal: Gleason score assignment by machine learning
 fast and reproducible annotations

Gleason 7 = 3+4

Obtaining ground-truth annotations

 Domain-expert Gleason annotations on ~ 900 Tissue MicroArray (TMA) images

K. Fricker

Model training on small image patches

• Training cohort: 641 TMA images

- Training cohort: 641 TMA images
- Extract training examples with corresponding Gleason labels

- Training cohort: 641 TMA images
- Extract training examples with corresponding Gleason labels

- Training cohort: 641 TMA images
- Extract training examples with corresponding Gleason labels

- **Training cohort:** 641 TMA images
- Extract training examples with corresponding Gleason labels

- Training cohort: 641 TMA images
- Extract training examples with corresponding Gleason labels

ETH zürich

Model training on small image patches

- **Training cohort:** 641 TMA images
- with corresponding Gleason labels
- Train a Gleason pattern classifier

Benign

ETHzürich

ETH zürich

Trained model used to imitate pathologist workflow

Pixel-level annotation

Arvaniti E. et al., Scientific Reports (2018)

Test cohort results: image-level agreement

Test cohort: 245 TMA images

K. Fricker J. Rüschoff

Highlighting Gleason-pattern-discriminative regions

Focus regions for Gleason pattern 3 predictions

 Model focus obtained by *Class Activation Mapping* (Zhou et al., *CVPR*, 2016)

Can we reduce the need for detailed pathologist annotations?

Can we reduce the need for detailed pathologist annotations?

Global-level (weak) annotations often available

Global-level label: e.g. Gleason 7

Can we reduce the need for detailed pathologist annotations?

- Global-level (weak) annotations often available
- > We can *learn* from such *weak annotations*

Global-level label: e.g. Gleason 7

Training with both local- and global-level annotations

Local annotations

Global (weak) annotation

AI & Health @ AMLD 2019

Arvaniti E. et al., Medical Imaging meets NeurIPS 2018

Training with both local- and global-level annotations

 \rightarrow

 \rightarrow

... →

AI & Health @ AMLD 2019

Arvaniti E. et al., Medical Imaging meets NeurIPS 2018

y_{local}

y_{pred}

minimize: Loss(y_{pred}, y_{local})

 \rightarrow

Training with both local- and global-level annotations

AI & Health @ AMLD 2019

Arvaniti E. et al., Medical Imaging meets NeurIPS 2018

Training with both local- and global-level annotations

AI & Health @ AMLD 2019

Arvaniti E. et al., Medical Imaging meets NeurIPS 2018

Task: classify low vs high Gleason score cases from The Cancer Genome Atlas (TCGA) whole-slide images.

AI & Health @ AMLD 2019

Task: classify low vs high Gleason score cases from The Cancer Genome Atlas (TCGA) whole-slide images.

Task: classify low vs high Gleason score cases from The Cancer Genome Atlas (TCGA) whole-slide images.

Task: classify low vs high Gleason score cases from The Cancer Genome Atlas (TCGA) whole-slide images.

Automated Gleason grading with machine learning

- Automated Gleason grading with machine learning
- Weakly-supervised training:
 - reduced need for expert annotations

- Automated Gleason grading with machine learning
- Weakly-supervised training:
 - reduced need for expert annotations

Next steps

Validate weakly-supervised training locally

- Automated Gleason grading with machine learning
- Weakly-supervised training:
 - reduced need for expert annotations

Next steps

- Validate weakly-supervised training locally
- Beyond predicting human annotations:
 > associate tissue images with molecular features, cancer recurrence, ...

Beyond predicting human annotations:

> associate tissue images with molecular features, cancer recurrence, ...