# Towards Model-Based Reinforcement Learning on Real Robots

<sub>by</sub> Georg Martius





# Vision

Dexterous and versatile robots as assistance to humans



[bergkvistanna karin@tuvie.com]

[NCCR Digital Fabrication]

- learning
- > adaptivity
- safety

# **Reinforcement learning achievements**

#### Robotics, Games: Go, Dota, Starcraft



[OpenAl 2019]



[Deepmind 2019]

#### Problems

need probitive amount of data simulations need very long time



[DARPA rescue] challenge]

# **Current Situation**

Learned robot control in recent **research** 

- using simulations of robot and environment
- trained to cope with anticipated variations
- works already for difficult tasks
  needs a high-fidelity simulation
  learning is inefficient (needs domain randomization)
  resulting controller is fixed
  new task: start from scratch



[OpenAl 2019]



[Hutter lab. ETH, 2020]

# How to achieve efficient learning and online adaptation?

# **Model-based Reinforcement Learning**

#### **Two instantiations**

#### Bellman operator to optimize a value function and the policy

- ➤ use model to collect data nearby real observation
- ➤ learn to solve a specific task
- ► global optimimization

#### Planning to search for a policy on the fly

- ➤ use model for planning
- ➤ perform new task on the fly
- ➤ optimize finite horizon problem



# **Model-based RL with Planning**

#### Challenges:

- ➤ Real time planning
  - previous general purpose planner are
  - 1-2 orders of magnitudes too slow
- ➤ Good models + uncertainty aware
- ➤ Safety



(KIT H<sup>2</sup>T)











**Cristina Pinneri** 

**Sebastian Blaes** 

Marin Vlastelica Shambhuraj Sawant

**Georg Martius** 

#### Cross Entropy Method (CEM)

➤ Sampling based optimization

 $a_1, \ldots, a_h \sim \mathcal{N}(\mu_i, \sigma_i^2)$ 



$$a_1, \ldots, a_h = \operatorname*{arg\,min}_{a_1, \ldots, a_h} J(a_1, \ldots, a_h)$$
  
J cost of rollout

# **Random Walk Model and Colored Noise**



Power spectral density of action sequences



Georg

8

### **Random Walk Model and Colored Noise**



Power spectral density of action sequences



9

#### **Cross Entropy Method (CEM)**

➤ Sampling based optimization

#### $a_{t,\dots,t+H} \sim \mathcal{N}(\mu_i, \sigma_i^2)$



#### improved Cross Entropy Method

- ♣ Memory
- + Colored noise: temporal correlation power-law spectrum:  $PSD \propto \frac{1}{f^{\beta}}$
- ➡ small improvements

Georg Martius <georg.martius@tue.mpg.de>

Pinneri, Sawant, Blaes, Achterhold, Stückler, GM. CORL 2020





(environment from DAPG project)

Georg Martius <georg.martius@tue.mpg.de>

11

Pinneri, Sawant, Blaes, Achterhold, Stückler, GM. CORL 2020



Georg Martius < georg.martius@tue.mpg.de>

Pinneri, Sawant, Blaes, Achterhold, Stückler, GM. CORL 2020

12

# Action



Georg Martius <georg.martius@tue.mpg.de>

13



# **Learn Policy from Plans**

We can create solutions for complicated control problems within seconds, but:

- ➤ need a lot of run-time compute
- ➤ mostly with Ground Truth models (simulations)

#### **Goal of our method:**

- ➤ train policy from planner data
- ➤ make policy and planner mutually improve themselves
- ➤ solve tasks that standard RL struggles with

#### Let's do simple behavioral cloning:

- ➤ does not work!
- ➤ multimodality + combounding errors



#### **Okay, use guidance** (*guided policy search*)

$$a_1, \dots, a_h = \operatorname*{arg\,min}_{a_1, \dots, a_h} f(a_1, \dots, a_h) + \lambda \sum_i ||a_i - \pi(s_i)||$$

better, but not ideal!



#### Okay, use guidance (guided policy search)

$$a_1, \dots, a_h = \operatorname*{arg\,min}_{a_1, \dots, a_h} f(a_1, \dots, a_h) + \lambda \sum_i \|a_i - \pi(s_i)\|$$

better, but not ideal!

► planner premature convergence Agent

➤ combounding errors





Pinneri\*, Sawant\*, Blaes, GM. ICLR 2021

#### Okay, use guidance (guided policy search)

$$a_1, \dots, a_h = \operatorname*{arg\,min}_{a_1, \dots, a_h} f(a_1, \dots, a_h) + \lambda \sum_i ||a_i - \pi(s_i)||$$

#### + relabeling (*DAgger*):



Okay, use guidance (guided policy search)

$$a_1, \dots, a_h = \underset{a_1, \dots, a_h}{\operatorname{arg\,min}} J(a_1, \dots, a_h) + \lambda C^{\operatorname{aux}}(a_1, \dots, a_h)$$

#### + relabeling (*Dagger*) + adaptive λ

don't use guidance if no progress on actual task



$$\lambda = c \frac{\mathcal{R}(J)}{\mathcal{R}(C^{\mathrm{aux}}) + \epsilon}$$

c relative importance

$$\mathcal{R}(C) = \max_{\text{elite-set}} C - \min_{\text{elite-set}} C$$

#### APEX (Adaptive Policy Extraction)

SAC

ICEM BC

Pinneri\*, Sawant\*, Blaes, GM. ICLR 2021

# **APEX results**



#### **Discussion:**

- + strong policies for hard tasks
- behavior not perfect
- high computational costs

Georg Martius <georg.martius@tue.mpg.de>

Pinneri\*, Sawant\*, Blaes, GM. ICLR 2021



# **Real-time Risk-Averse Model-based Planning**

#### Towards real-robots:

- ➤ learned models: adapt to real system
- ➤ safety: do not destroy the robot / environment
- ➤ real-time: run at > 25Hz

#### Challenges:

- ➤ explore effective but careful
- ➤ need powerful dynamics models
- ➤ awareness of **uncertainties** required

➤ separation of *aleatoric* and *epistemic* uncertainty

#### Why?

24

- ➤ aleatoric: avoid
- ➤ epistemic: seek to reduce



Georg Martius <georg.martius@tue.mpg.de>

➤ separation of *aleatoric* and *epistemic* uncertainty

#### Why?

- ➤ aleatoric: avoid
- ➤ epistemic: seek to reduce



#### Ensemble of probabilistic Deep Nets

➤ good estimates of separation both types of uncertainty

Georg Martius <georg.martius@tue.mpg.de>

#### What about n-step preditions?

- ➤ PETS: [Chua et al 2018] Probabilistic Ensemble models with Trajectory Sampling
- ➤ sampling at every timestep **mixes** uncertainties



Vlastelica\*, Blaes\*, Pinneri, GM. CORL 2021

#### What about n-step preditions?

- ➤ PETS: [Chua et al 2018] Probabilistic Ensemble models with Trajectory Sampling
- ➤ PETSUS [ours] disentangle uncertainties



Vlastelica\*, Blaes\*, Pinneri, GM. CORL 2021

#### What about n-step preditions?

28

- ➤ PETS: [Chua et al 2018] Probabilistic Ensemble models with Trajectory Sampling
- ➤ PETSUS [ours] disentangles uncertainties also for n-step predictions



Georg Martius <georg.martius@tue.mpg.de>

# **Efficient Exploration**

#### Seek to reduce epistemic uncertaint:

 $\mathbf{a}$ 

$$\mathbf{a} = \arg\min J(\mathbf{a}) - w^{\mathcal{E}} \operatorname{Epistemic}(\mathbf{a})$$

► Exploration bonus

toy world: Bridge Maze



no bonus 
$$\,w^{\mathcal{E}}=0\,$$







# **Risk-averse Behavior**

Seek to reduce epistemic uncertaint:

$$\mathbf{a} = \underset{\mathbf{a}}{\operatorname{arg\,min}} J(\mathbf{a}) - w^{\mathcal{E}} \operatorname{Epistemic}(\mathbf{a})$$

**Risk-averse planning** 

$$\mathbf{a} = \underset{\mathbf{a}}{\operatorname{arg\,min}} J(\mathbf{a}) + w^{\mathcal{A}} \operatorname{Aleatoric}(\mathbf{a})$$

 avoid unpredictable areas: uncertainty penalty toy world: Bridge Maze





Georg Martius <georg.martius@tue.mpg.de>

# **Risk-averse Behavior**

Seek to reduce epistemic uncertaint:

$$\mathbf{a} = \underset{\mathbf{a}}{\operatorname{arg\,min}} J(\mathbf{a}) + w^{\mathcal{E}} \underset{\mathbf{a}}{\operatorname{Epistemic}}(\mathbf{a})$$

**Risk-averse planning** 

31

$$\mathbf{a} = \underset{\mathbf{a}}{\operatorname{arg\,min}} J(\mathbf{a}) + w^{\mathcal{A}} \operatorname{Aleatoric}(\mathbf{a})$$

avoid unpredictable areas: uncertainty penalty
 Noisy Fetch Pick & Place
 RAZER PETS
 O<sup>1</sup>/<sub>0</sub>
 <

Georg Martius <georg.martius@tue.mpg.de>

# **Safety-aware Behavior**

#### Probabilistic safety constraints as cost penalty

- $\succ$  compute probability of entering unsafe set  $\mathbb C$
- $\succ$  add high penalty cost if larger  $\delta$
- ➤ here: simple box constraints: analytic solution for probability

$$\mathbf{a} = \underset{\mathbf{a}}{\operatorname{arg\,min}} J(\mathbf{a}) + w^{\mathcal{S}} \sum_{\Delta t=1}^{H} \left[ p(\hat{x}_{t+\Delta t} \in \mathbb{C}) > \delta \right]$$

# **Safety-aware Behavior**

#### Probabilistic safety constraints as cost penalty

- $\succ$  compute probability of entering unsafe set  $\mathbb C$
- $\succ$  add high penalty cost if larger  $\delta$
- ➤ here: simple box constraints: analytic solution for probability



33

# **Safety-aware Behavior**

#### Probabilistic safety constraints as cost penalty

- $\succ$  compute probability of entering unsafe set  $\mathbb C$
- $\succ$  add high penalty cost if larger  $\delta$
- ➤ here: simple box constraints: analytic solution for probability



Georg Martius <georg.martius@tue.mpg.de>

# Summary

#### Fast universal planning – iCEM

- ➤ works with arbtrary models and cost functions
- ➤ 1-2 orders of magnitude faster than previous SotA

#### Extracting policies is hard – APEX is one solution

- ➤ adaptive guided policy search + Dagger
- ➤ offline RL might be a better choice

#### Planning with learned models – RAZER

- ➤ uncertainty estimation
- ➤ efficient exploration, risk and safety-aware behavior
- ➤ GPU implementation at 30 Hz







#### Near future applications to real robots:



real-robot-challenge.com @ MPI-IS











Volkswagen Stiftung

#### Thank you!

Georg Martius <georg.martius@tue.mpg.de>

# imprs-is CyberValley

















Huanbo Sun

**Georg Martius** 

Georg Martius <georg.martius@tue.mpg.de>

39

#### **Coming out soon: ML-driven haptic sensor**



**Huanbo Sun** (Ph.D. Student) Autonomous Learning Group



Katherine J. Kuchenbecker Haptic Intelligence Department



**Georg Martius** Autonomous Learning Group







Sun, Kuchenbecker, Martius, Nature Machine Intelligence, 2022

# **iCEM Sensitivity**



20

40

planning horizon

60

80

Georg Martius <georg.martius@tue.mpg.de>

0.8

1.0

0.4

0.6

 $\sigma_{init}$ 

0.2

### **iCEM** Ablation

best -

