

Graph neural networks and reinforcement learning in traffic optimization in cities

Kamil A. Kaczmarek

Outline

- 1. Introductions
- 2. Our approach
- 3. From simulation to meta-models to graph NN
- 4. Reinforcement learning

Outline

- 1. Introductions
- 2. Our approach
- 3. From simulation to meta-models to graph NN
- 4. Reinforcement learning

neptune.ai <-> TensorCell, the virtuous collaboration

- Neptune.ai
 - Experiment management
 - Collaboration

neptune.ai <-> TensorCell, the virtuous collaboration

- Neptune.ai
 - Experiment management
 - Collaboration
- TensorCell
 - Started 2016, over 20 researchers now
 - o 100% remote work
 - Published on NeurIPS workshops, MT-ITS, TFML
 - o Group is "informal" :)

Traffic optimization - the significance of the problem

Traffic optimization - the significance of the problem

~78.5 bln USD - estimated annual cost of congestion in the USA (cost of wasted time and fuel).

Source:

https://www.ibtta.org/sites/default/files/documents/MAF/Costs-of-Congestion-INRIX-Cebr-Report%20(3).pdf

Traffic optimizatio

~78. of co fuel) Source https:// on-INR

BIGGEST KILLES

Air Pollution Cuts Two Years Off The Average World Life Expectancy

That's more than five times as much as HIV/AIDS or Malaria.

Traffic

- مورسا ФХ Français Руссиий Españo
- approx. 1.35 million people die each year as a result of road traffic crashes
- road traffic crashes cost most countries 3% of their gross domestic product

Source: http://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries (Dec 2018)

ıge World

THUE'S MORE CHAIN LIVE LIMES AS MOCH AS HIV/AIDS OF MAIANA.

Introdu

Cities Worldwide Are Reimagining Their Relationship With Cars

Traffic

By Somini Sengupta and Nadja Popovich | Illustrations by Tim Peacock Nov. 14, 2019

ge World

Outline

- 1. Introductions
- 2. Our approach
- 3. From simulation to meta-models to graph NN
- 4. Reinforcement learning

- Focus
 - Traffic prediction
 - Rare road events
 - "What-if" type of scenarios

- Focus
 - Traffic prediction
 - Rare road events
 - "What-if" type of scenarios
- Scope
 - District in Warsaw named: "Ochota"

- Focus
 - Traffic prediction
 - Rare road events
 - "What-if" type of scenarios
- Scope
 - District in Warsaw named: "Ochota"
- Goal
 - Minimize waiting time on red lights

Outline

- 1. Introductions
- 2. Our approach
- 3. From simulation to meta-models to graph NN
- 4. Reinforcement learning

Traffic Simulation Framework

Traffic Simulation Framework

Nagel, K., & Schreckenberg, M. (1992).

A cellular automaton model for freeway traffic. image: http://www.thp.uni-koeln.de/~as/Mypage/traffic.html

Traffic Simulation Framework

Nagel, K., & Schreckenberg, M. (1992).

A cellular automaton model for freeway traffic. image: http://www.thp.uni-koeln.de/~as/Mypage/traffic.html

Gora, P. (2009). Traffic Simulation Framework-a cellular automaton-based tool for simulating and investigating real city traffic.

Traffic Simulation Framework

Time & compute consuming

Nagel, K., & Schreckenberg, M. (1992).

A cellular automaton model for freeway traffic. image: http://www.thp.uni-koeln.de/~as/Mypage/traffic.html

Gora, P. (2009). Traffic Simulation Framework-a cellular automaton-based tool for simulating and investigating real city traffic.

meta-models: results

meta-model	inference time [ms]	approximation error
NN	0.8	1.62%
LightGBM	0.4	1.72%
Simulator	30'000	-

training set = 85336 elements

test set = 20000 elements

"element" is 10 minutes of traffic simulation with 42000 cars.

meta-models: application

Goal: minimize waiting time on red lights.

optimization algorithm	[LightGBM] best result	[LightGBM] best result in simulation	[NN] best result	[NN] best result in simulation	[Simulation] best result
Genetic algorithm	25318	37693	31890	37179	31735
Simulated annealing	31910	33860	32681	35885	33217

Total waiting time for all cars in simulation [sec]

Graph NN, architecture

Skowronek, Ł., Mozejko, M., Gora, P., & Klemenko, A. (2019). Graph-based sparse neural networks for traffic signal optimization. (NeurIPS), 1–24.

meta-models: results

Statistic	Previous approach	Graph NN
Approximation error	1.62%	1.32%
Best result in simulation	31735 [s]	31827 [s]
Inference time	0.9 [ms]	2.8 [ms]

Graph NN, sanity-check

Outline

- 1. Introductions
- 2. Our approach
- 3. From simulation to meta-models to graph NN
- 4. Reinforcement learning

Conceptual overview

Wei, H., Zheng, G., Gayah, V., & Li, Z. (2019). A Survey on Traffic Signal Control Methods. 1(1). http://arxiv.org/abs/1904.08117

- Environment
 - Lightweight simulator

- Environment
 - Lightweight simulator
- State
 - state of the traffic

- Environment
 - Lightweight simulator
- State
 - state of the traffic
- Action
 - o modification of traffic signal settings

- Environment
 - Lightweight simulator
- State
 - state of the traffic
- Action
 - modification of traffic signal settings
- Reward
 - o quality of traffic in a given time period

DQN, preliminary results

mail: kamil@neptune.ai

twitter: @kamil_k7k

github: @kamil-kaczmarek

<u>https://neptune.ai</u> (check for experiments management)
<u>TensorCell is on Facebook (check for research updates)</u>