Location Intelligence in urban planning: Making better decision with human mobility data

Javier Pérez Trufero Head of Data at CARTO

CART

CARTO

Pioneers in Location Intelligence

1,200

Customers

Accel EARLYBIRD

150+

Team members

salesforce

.

Gartner Cool Vendor 2017

CARTO turns location data into business outcomes in 5 key steps

Data Ingestion &

Management

Data Enrichment

Analysis

Solutions & Visualization

Integration

Market-leaders in Cities & Covernments use CARTO:

CARTO

Thousands of business decisions are still based

on census data

MICHIGA

OREGON

United States	9 years ago
Jnited Kingdom	8 years ago
Spain	8 years ago
Australia	3 years ago
Japan	4 years ago
Canada	3 years ago
Germany	8 years ago
Italy	8 years ago

Year Average

Weighted by population

90% of people have their phone within 1M reach 24 hours a day

Mobile Data is Booming...

5bn

More than 5 billion people are calling, texting, tweeting and browsing on mobile phones worldwide

18x

Mobile data traffic has grown 18-fold over the past 5 years

11.6bn

There will be 11.6 billion mobile-connected devices by 2021

Location Data Brings Context to Mobile Data

Huge opportunity to expand Location Intelligence to new organizations that are now getting ready to be location aware.

CARTO

Footfall

23

0

2,497,455

Privacy by design

Multiple mechanisms in place to preserve our customers' privacy and to ensure we are 100% GDPR compliant

No data is used to locate or contact individuals

CARTO stack

Vodafone Analytics starts by bringing value to 4 key verticals

Answering key questions

CARTO

۵

5

G

Number of visitors

MAP LEGEND

A visitor will be considered someone whose presence has been detected in a neighbourhood which is not his/her residence.

It is time to move from visualizing data on maps to analyzing data using maps

\bigcirc

Where?

Where are tourists staying and going to?

You're likely using a BI platform

Why?

Can we model the patterns and movements of tourists to improve operational efficiencies?

You need to use an LI Platform

CARTOFrames and Data Observatory 2.0

A Python package for integrating CARTO maps, analysis, data services, and the CARTO Data Observatory into your data science frameworks, including Pandas and Jupyter Notebooks.

Fusing multiple data streams to find twin areas between cities

$$d\left(\mathbf{Y}_{origin}, \mathbf{Y}_{target}\right) = \sqrt{\sum_{j} \left(Y_{origin}(j) - Y_{target}(j)\right)^{2}}$$

With some caveats:

- 1. Different variances?
- 2. Correlated variables?
- 3. Missing data?
- 4. When is a distance small enough? Or how to define similarity?

k

Out[3]:

Let's see a summary of the data available for the region of MADRID for a given spatial resolution: providers and packages (DO)

Sev

4]:	<pre>mad = regions[1]</pre>
	<pre>spatial_resolutions = ['305 meters']</pre>
	<pre>providers = mad.list_providers(spatial_resolutions=spatial_resol</pre>
	utions)
	<pre>providers_df = entities2df(providers)</pre>
	<pre>providers_df[['description','id','name']].sort_values(by='id')</pre>

Out[4]:

In [

	description	id	name
8	Open demographics data from CARTO Data Observa	1	vodaron
_	Unice260 demographics data for Spain	2	Linico260

C/Goya in Madrid

Demographics

Demographics Vodafone Analytics

Demographics Vodafone Analytics Road Traffic Financial Demographics

Demographics Vodafone Analytics Road Traffic Financial Points of Interest

Vodafone Analytics evolution

Day of Travel

All selected	
Thursday	172.3K
Friday	171.2K
Wednesday	169.3K
Tuesday	167.7K
Monday	163.1K
Saturdav	1 <i>4</i> 7 9k
Time of Travel	
All selected	
Midday	366.0K
Morning	290.3K
Night	239.1k
Evening	230.3K

Direction of Travel

All selected

*

© CARTO © OpenStreetMap contributors

w	187.1K
s	173.6K
E	171.7K

Crafted with ♥ and CARTOframes | Learn more