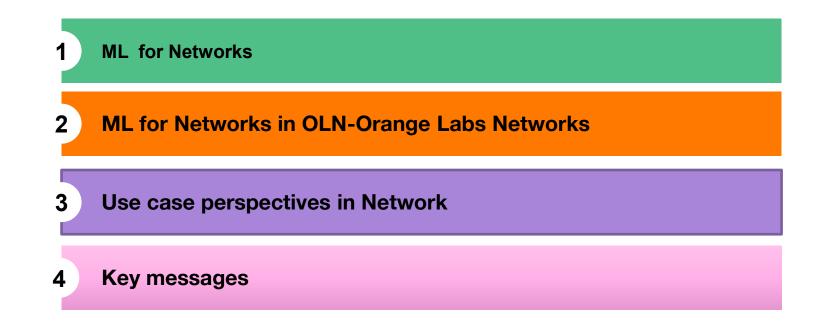
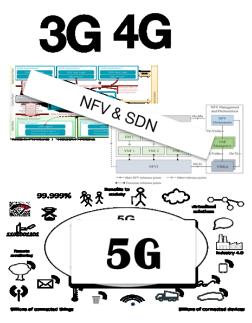
Al for Networks : Use case perspectives

Imen Grida Ben Yahia

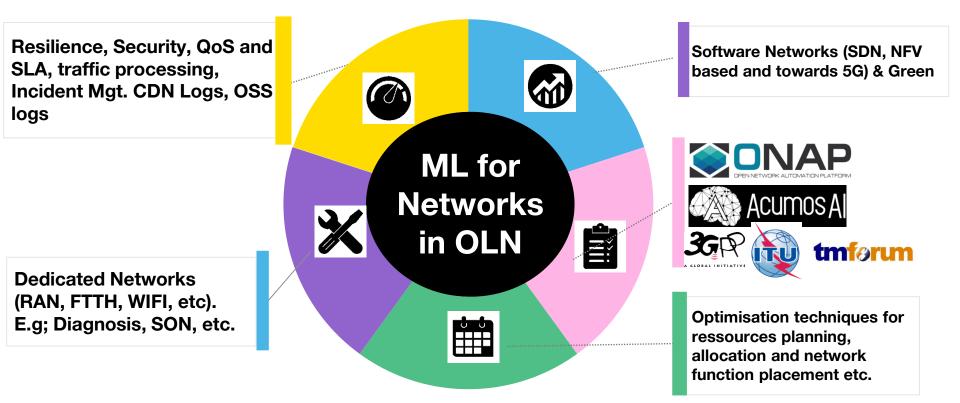

Orange Labs Networks


Orange Expert

oran

Outline

SON; Self Organizing Networks Autonomic Networking Cognitive Networking



Data description	Deriving statistical characteristics of data
Data segmentation	Grouping of data into homogeneous clusters
Data association	Discovering interesting relations between variables
Data classification	Finding the function linking target categorical variables with input variables
Data regression	Finding the function linking target numerical variables with input variables
30 Data forecasting	Predicting the value of a target variable for the future
マピ Variation detection	Determining possible drifts in data characteristics
X Anomaly detection	Identifying items which do not conform to an expected pattern
Sequential optimi- zation of parameters	Controlling an interactive system or environment

Machine Learning Different steps	for Networks		
What happened?	Why did it happen?	What will happen?	How can we make it happen?
Information			Actuations
Observe	Understand	Predict	Learn/Act
Estimate the sensitivity of KPIs to parameters	Determine the most impacting parameters	forecast an event in the future	Automated decision support based on acquired knowledge
Analyze correlations between KPIs	Root cause analysis	Model a generalizable	Online learning:
Characterize normal behavior → Detect anomalies, trends, context shifts		relationship between metrics	Try (and may fail) to enhance future decisions

Machine Learning in Orange Labs Networks (OLN) *Typology of activities*

Variable scope of use cases : E2E, specific network segments covering both infrastructure and service levels

Machine Learning in Networks Typology of Data

Various

types &

format

Probes, Monitoring agents, Surveys, etc

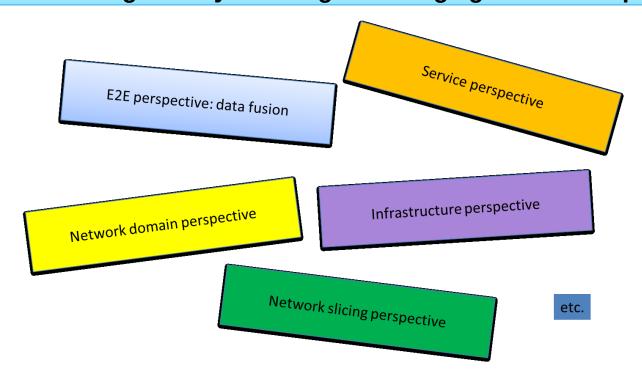
Data from RAN, Fixed access, Wi-Fi, Core Networks, Network topology, CDN logs, OSS logs, QoS/QoE metrics, Alarms, trouble tickets, etc.

Service parameters, SLA, Network configuration files

Social Networks, Weather Forecast

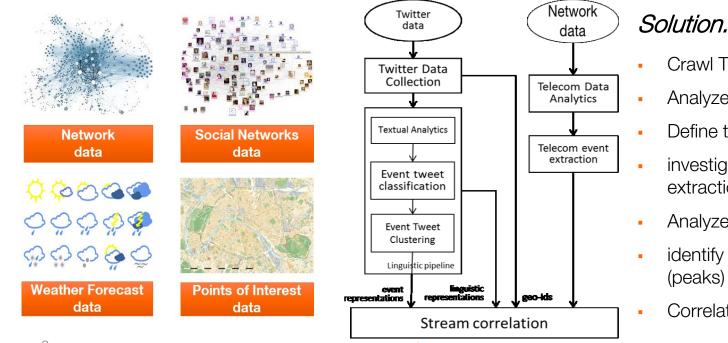
VNFs: e.g. vIMS, vEPC, Slicing: data from PoCs on Smart Grid, eHealth, etc. **Numerical Data**

Categorical Data


Timeseries Data

Text

Code (config. Files)

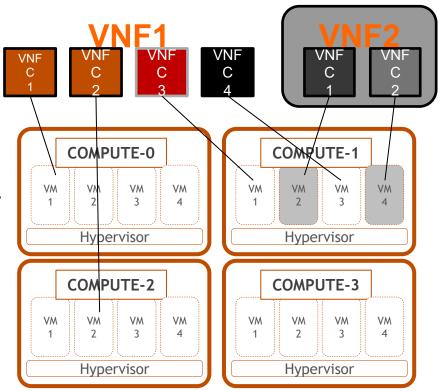

3 Use case perspectives in Network

Problem framing is even more important in Machine Learning for Networks
Usecases are generally covering or belonging to different perspectives

e2e perspective: data fusion

Problem. Predict demand patterns and anomalies (peaks, mobility, user typology) : Enriching telecom internal data with external evidence. E.g. Use Social Media data (Twitter, Foursquare,..) to predict large gatherings of people that might drastically affect traffic demand

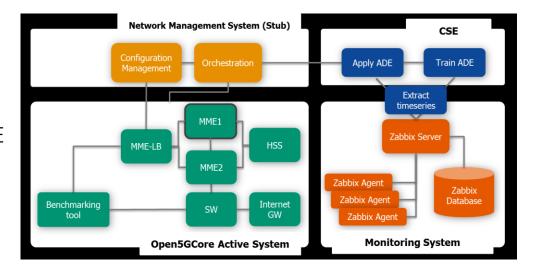
- Crawl Twitter data,
- Analyze Twitter data,
- Define twitter events,
- investigate algorithms for event extraction.
- Analyze Telecom data data,
- identify consumption anomalies (peaks)
- Correlation analysis


Ref. Spatio-temporal clustering approach for detecting functional regions in cities

Use case perspectives in Network

Virtual infrastructure perspective

Problem. Noisy Neighbor: 2 or more VNFs, deployed on same cloud infrastructure. This may cause "noise" to one another by "hogging" resources (including CPU, Memory, Storage, Networking).



Use case perspectives in Network

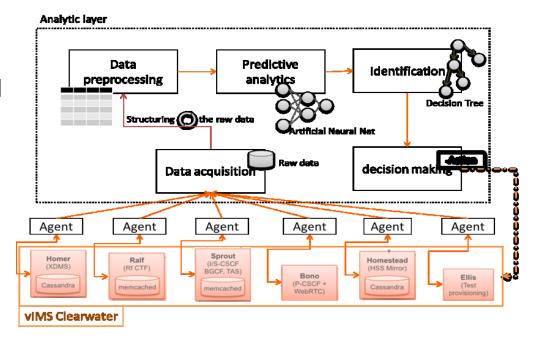
Dedicated Network perspective

Problem. Anomaly detection for vEPC

- 1/ Anomaly is detected
- 2/ A notification is sent to orchestration
- 3/ The orchestrator will indicate to the MME LB to forward all the requests to the hot standby MME
- 4/ MME having the abnormal behaviour is rebooted by the orchestration functionality.

🜌 Fraunhofer

3


Use case perspectives in Network

Service perspective

Problem. Guarantee Service Level Objectives (SLO). e.g. of SLOs

- Service availability
- Service Response time
- Latency

. . . .

- ✓ Availability and Quality of data : a must have
- Problem framing is important: the use case perspective help to select the data to use
- E2E approach towards Network Intelligence: how to build a common E2E approach while taking into account the different perspectives

Thank You!