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I. Reinforcement 
Learning Primer
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Reinforcement Learning
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• Reinforcement learning is branch of Machine Learning where 
an agent learn how to behave in an environment by observing 
the state of the env, performing actions and seeing the results
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Environment: Cart-Pole - a pole attached to a cart
Goal: prevent the pole from falling down
Observation: current position of the pole
Actions: move the cart left or right

RL-based control
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Environment: Cart-Pole - a pole attached to a cart
Goal: prevent it from falling over
Observation: current position of the pole
Actions: move the cart left or right

RL-based control
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Environment examples
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OpenAI Gym

import gym

env = gym.make('CartPole-v0')
obs = env.reset()
agent = MyGreatAgent()
done = False

while not done:
action = agent.get_next_action(obs)
obs, reward, done, info = 

env.step(action)

• Gym is the open-source Python library with a vast set of 
standardized environments including algorithmic examples,
Atari games and 3D robots

• Gym allows for developing and comparing reinforcement learning 
algorithms in the same virtual conditions

• Basic concepts:
• environment (the world)
• agent (an algorithm that

one has to create)

• Unified environment interface:
• reset()
• step()
• render()
• + data containers
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II. RL in Networking
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Motivation
• Modern communication networks have evolved into   

extremely complex and dynamic systems

• Traditional (rule-based) design of solutions is based on 
(over)simplified models, hence they bring only limited 
performance gains

• Mostly focused on a single component (e.g. protocol 
layer) neglecting the end-to-end network’s nature

• Networks generate a large amount of 
monitoring data, that can help to 
improve them. How to process it?
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ML+Networking=
• From the collected data ML can derive and provide 

estimated models with tunable accuracy

• Especially, RL fits because of its ability to learn control 
tasks

• We can set a policy! 

• The proposed RL-based control solutions overtake 
traditionally designed ones in terms of performance and 
efficiency (e.g. QTCP, DASH video clients, resource 
scheduling)

• but…

10



ns3-gym @ AMLD 2019, Lausanne

Unfavorable conditions

• RL in networking research is slowed down by:

• The existence of a knowledge gap between ML and 
networking communities

• Lack of training environments
• Problems of testbeds and real network deployments

• The need for reliable benchmarking to compare and 
track progress
• currently case-by-case solutions
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ns3-gym framework
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• A Gym agent observes environment created in ns-3 network 
simulator

• Playground for ML and networking researchers to work 
together -> faster progress in RLN



ns3-gym @ AMLD 2019, Lausanne

Why simulations?
• Simulations are more practical in comparison to the real 

world experiments:
• easily accessible – no HW required, just download, 

develop and test your ideas
• fully controllable - god's view on the network
• faster – run multiple simulations in parallel
• safer – exploration without consequences

• Curriculum learning – start with simple model, then add 
more and more complexity
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Why ns-3?

• ns-3 is a discrete-event network simulator for networking 
systems

• Shipped with a vast set of models for Internet protocol 
stacks, wireless propagation, wireless technologies 
(including WiFi, LTE, WiMAX, ZigBee)

• ns-3 community strives to make its models reflect reality 
as close as possible

• It became de-facto a standard in networking research 
and is accepted by the community
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Basic example
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import gym
import ns3gym

env = gym.make('ns3-v0')
obs = env.reset()
agent = MyGreatAgent()
done = False

while not done:
action = agent.get_next_action(obs)
obs, reward, done, info = env.step(action
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Generic Environments
• The environment is defined entirely in ns-3 simulation script

• any simulation script can be used as a Gym environment

• This requires only to instantiate OpenGymInterface and 
implement the ns3-gym C++ interface with following 
functions:

• Ptr<OpenGymSpace> GetObservationSpace();
• Ptr<OpenGymSpace> GetActionSpace();
• Ptr<OpenGymDataContainer> GetObservation();
• float GetReward();
• bool GetGameOver();
• std::string GetExtraInfo();
• bool ExecuteActions(Ptr<OpenGymDataContainer> action);

• ns3-gym – automatically maps corresponding C++ and 
Python functions and hide the entire complexity behind easy 
to use API
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Custom Environments
• We provide the first set of example problems along 

with baseline solutions for:
• Linear 802.11-based mesh topology
• Interference pattern learning
• TCP Congestion Control
• more are coming…
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Example I: Interference pattern
• Scenario: 802.11 network collocated with interferer
• Observation: occupation on each channel in the current time slot
• Action: select the channel to be used for the next time slot
• Reward: +1 in case of no collision with interferer; otherwise -1
• Gameover: three collisions during the last ten time-slots
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Example I: Interference pattern
• Scenario: 802.11 network collocated with interferer
• Observation: occupation on each channel in the current time slot
• Action: select the channel to be used for the next time slot
• Reward: +1 in case of no collision with interferer; otherwise -1
• Gameover: three collisions during the last ten time-slots
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Conclusions

• ns3-gym - toolkit that simplifies the usage of RL in 
networking problems

• It is based on OpenAI Gym and the ns-3 simulator

• We plan to extend the set of available environments 

• We hope for research community to grow around it
• got example agent implementations from external 

users
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Thank you!
Q&A

https://github.com/tkn-tub/ns3-gym

Check ns3-gym

on GitHub
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d d d d

Example II: Deep Q-learning 
for CW tuning

• Scenario: linear wireless topology
• Observation: queue length of each node
• Action: set CW (channel access probability) for each node
• Reward: the number of packets received at the flow’s ultimate 

destination during last step interval
• Gameover: end of simulation time
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Example II: Performance 
Comparison
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Multi-agent environments

• They belong to the most complex branch of RL research

• A number of agents must collaborate or compete for 
resources with others

• Traditional RL approaches fail to learn
• each agent tries to predict the actions of other agents
• randomness
• selfish behavior

• A communication network by nature is a multi-agent 
environment.
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Learning to collaborate

• Collaboration with and without exchange of information.

• Spectrum Collaboration Challenge by DARPA in USA
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Reproducibility crisis
• A Nature survey [1] indicated that more than 70 percent of 

researchers have tried and failed to reproduce another scientist’s 
experiments, and more than half have failed to reproduce their 
own experiments.

• This is mainly caused by:

• source code not being released or only partially released

• missing documentation – hard to understand and execute 
properly

• lack of standardization among the papers

• How to track the progress in the area?

[1] Monya Baker, “Is there a reproducibility crisis?”, Nature, 2016, 
https://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970
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Example functions

Ptr<OpenGymSpace> GetObservationSpace() 
{

uint32_t nodeNum = NodeList::GetNNodes ();
float low = 0.0;
float high = 100.0;
std::vector<uint32_t> shape = {nodeNum,};
std::string type = TypeNameGet<uint32_t> ();
Ptr<OpenGymBoxSpace> space = 

CreateObject<OpenGymBoxSpace>(low,high,shape,type);
return space;

}
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Example functions
Ptr<OpenGymDataContainer> GetObservation()
{

uint32_t nodeNum = NodeList::GetNNodes ();
std::vector<uint32_t> shape = {nodeNum,};
Ptr<OpenGymBoxContainer<uint32_t>> box = 

CreateObject<OpenGymBoxContainer<uint32_t>>(shape);

uint32_t nodeNum = NodeList::GetNNodes ();
for (uint32_t i=0; i<nodeNum; i++) {

Ptr<Node> node = NodeList::GetNode(i);
Ptr<WifiMacQueue> queue = GetQueue (node);
uint32_t value = queue->GetNPackets();
box->AddValue(value);

}
return box;

}
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