
ns3-gym – The Playground for
Reinforcement Learning in Networking

Research

Piotr Gawłowicz
gawlowicz@tu-berlin.de

AMLD, 28.01.2019, Lausanne

I. Reinforcement
Learning Primer

ns3-gym @ AMLD 2019, Lausanne

Reinforcement Learning

3

• Reinforcement learning is branch of Machine Learning where
an agent learn how to behave in an environment by observing
the state of the env, performing actions and seeing the results

ns3-gym @ AMLD 2019, Lausanne

Environment: Cart-Pole - a pole attached to a cart
Goal: prevent the pole from falling down
Observation: current position of the pole
Actions: move the cart left or right

RL-based control

4

ns3-gym @ AMLD 2019, Lausanne

Environment: Cart-Pole - a pole attached to a cart
Goal: prevent it from falling over
Observation: current position of the pole
Actions: move the cart left or right

RL-based control

5

ns3-gym @ AMLD 2019, Lausanne

Environment examples

6

ns3-gym @ AMLD 2019, Lausanne

OpenAI Gym

import gym

env = gym.make('CartPole-v0')
obs = env.reset()
agent = MyGreatAgent()
done = False

while not done:
action = agent.get_next_action(obs)
obs, reward, done, info =

env.step(action)

• Gym is the open-source Python library with a vast set of
standardized environments including algorithmic examples,
Atari games and 3D robots

• Gym allows for developing and comparing reinforcement learning
algorithms in the same virtual conditions

• Basic concepts:
• environment (the world)
• agent (an algorithm that

one has to create)

• Unified environment interface:
• reset()
• step()
• render()
• + data containers

7

II. RL in Networking

ns3-gym @ AMLD 2019, Lausanne

Motivation
• Modern communication networks have evolved into

extremely complex and dynamic systems

• Traditional (rule-based) design of solutions is based on
(over)simplified models, hence they bring only limited
performance gains

• Mostly focused on a single component (e.g. protocol
layer) neglecting the end-to-end network’s nature

• Networks generate a large amount of
monitoring data, that can help to
improve them. How to process it?

9

ns3-gym @ AMLD 2019, Lausanne

ML+Networking=
• From the collected data ML can derive and provide

estimated models with tunable accuracy

• Especially, RL fits because of its ability to learn control
tasks

• We can set a policy!

• The proposed RL-based control solutions overtake
traditionally designed ones in terms of performance and
efficiency (e.g. QTCP, DASH video clients, resource
scheduling)

• but…

10

ns3-gym @ AMLD 2019, Lausanne

Unfavorable conditions

• RL in networking research is slowed down by:

• The existence of a knowledge gap between ML and
networking communities

• Lack of training environments
• Problems of testbeds and real network deployments

• The need for reliable benchmarking to compare and
track progress
• currently case-by-case solutions

11

ns3-gym @ AMLD 2019, Lausanne

ns3-gym framework

12

• A Gym agent observes environment created in ns-3 network
simulator

• Playground for ML and networking researchers to work
together -> faster progress in RLN

ns3-gym @ AMLD 2019, Lausanne

Why simulations?
• Simulations are more practical in comparison to the real

world experiments:
• easily accessible – no HW required, just download,

develop and test your ideas
• fully controllable - god's view on the network
• faster – run multiple simulations in parallel
• safer – exploration without consequences

• Curriculum learning – start with simple model, then add
more and more complexity

13

ns3-gym @ AMLD 2019, Lausanne

Why ns-3?

• ns-3 is a discrete-event network simulator for networking
systems

• Shipped with a vast set of models for Internet protocol
stacks, wireless propagation, wireless technologies
(including WiFi, LTE, WiMAX, ZigBee)

• ns-3 community strives to make its models reflect reality
as close as possible

• It became de-facto a standard in networking research
and is accepted by the community

14

ns3-gym @ AMLD 2019, Lausanne

Basic example

15

import gym
import ns3gym

env = gym.make('ns3-v0')
obs = env.reset()
agent = MyGreatAgent()
done = False

while not done:
action = agent.get_next_action(obs)
obs, reward, done, info = env.step(action

ns3-gym @ AMLD 2019, Lausanne

Generic Environments
• The environment is defined entirely in ns-3 simulation script

• any simulation script can be used as a Gym environment

• This requires only to instantiate OpenGymInterface and
implement the ns3-gym C++ interface with following
functions:

• Ptr<OpenGymSpace> GetObservationSpace();
• Ptr<OpenGymSpace> GetActionSpace();
• Ptr<OpenGymDataContainer> GetObservation();
• float GetReward();
• bool GetGameOver();
• std::string GetExtraInfo();
• bool ExecuteActions(Ptr<OpenGymDataContainer> action);

• ns3-gym – automatically maps corresponding C++ and
Python functions and hide the entire complexity behind easy
to use API

16

ns3-gym @ AMLD 2019, Lausanne

Custom Environments
• We provide the first set of example problems along

with baseline solutions for:
• Linear 802.11-based mesh topology
• Interference pattern learning
• TCP Congestion Control
• more are coming…

17

ns3-gym @ AMLD 2019, Lausanne

Example I: Interference pattern
• Scenario: 802.11 network collocated with interferer
• Observation: occupation on each channel in the current time slot
• Action: select the channel to be used for the next time slot
• Reward: +1 in case of no collision with interferer; otherwise -1
• Gameover: three collisions during the last ten time-slots

18

ns3-gym @ AMLD 2019, Lausanne

Example I: Interference pattern
• Scenario: 802.11 network collocated with interferer
• Observation: occupation on each channel in the current time slot
• Action: select the channel to be used for the next time slot
• Reward: +1 in case of no collision with interferer; otherwise -1
• Gameover: three collisions during the last ten time-slots

19

ns3-gym @ AMLD 2019, Lausanne

Conclusions

• ns3-gym - toolkit that simplifies the usage of RL in
networking problems

• It is based on OpenAI Gym and the ns-3 simulator

• We plan to extend the set of available environments

• We hope for research community to grow around it
• got example agent implementations from external

users

20

ns3-gym @ AMLD 2019, Lausanne

Thank you!
Q&A

https://github.com/tkn-tub/ns3-gym

Check ns3-gym

on GitHub

21

ns3-gym @ AMLD 2019, Lausanne

d d d d

Example II: Deep Q-learning
for CW tuning

• Scenario: linear wireless topology
• Observation: queue length of each node
• Action: set CW (channel access probability) for each node
• Reward: the number of packets received at the flow’s ultimate

destination during last step interval
• Gameover: end of simulation time

22

ns3-gym @ AMLD 2019, Lausanne

Example II: Performance
Comparison

23

ns3-gym @ AMLD 2019, Lausanne

Multi-agent environments

• They belong to the most complex branch of RL research

• A number of agents must collaborate or compete for
resources with others

• Traditional RL approaches fail to learn
• each agent tries to predict the actions of other agents
• randomness
• selfish behavior

• A communication network by nature is a multi-agent
environment.

24

ns3-gym @ AMLD 2019, Lausanne

Learning to collaborate

• Collaboration with and without exchange of information.

• Spectrum Collaboration Challenge by DARPA in USA

25

ns3-gym @ AMLD 2019, Lausanne

Reproducibility crisis
• A Nature survey [1] indicated that more than 70 percent of

researchers have tried and failed to reproduce another scientist’s
experiments, and more than half have failed to reproduce their
own experiments.

• This is mainly caused by:

• source code not being released or only partially released

• missing documentation – hard to understand and execute
properly

• lack of standardization among the papers

• How to track the progress in the area?

[1] Monya Baker, “Is there a reproducibility crisis?”, Nature, 2016,
https://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970

26

ns3-gym @ AMLD 2019, Lausanne

Example functions

Ptr<OpenGymSpace> GetObservationSpace()
{

uint32_t nodeNum = NodeList::GetNNodes ();
float low = 0.0;
float high = 100.0;
std::vector<uint32_t> shape = {nodeNum,};
std::string type = TypeNameGet<uint32_t> ();
Ptr<OpenGymBoxSpace> space =

CreateObject<OpenGymBoxSpace>(low,high,shape,type);
return space;

}

27

ns3-gym @ AMLD 2019, Lausanne

Example functions
Ptr<OpenGymDataContainer> GetObservation()
{

uint32_t nodeNum = NodeList::GetNNodes ();
std::vector<uint32_t> shape = {nodeNum,};
Ptr<OpenGymBoxContainer<uint32_t>> box =

CreateObject<OpenGymBoxContainer<uint32_t>>(shape);

uint32_t nodeNum = NodeList::GetNNodes ();
for (uint32_t i=0; i<nodeNum; i++) {

Ptr<Node> node = NodeList::GetNode(i);
Ptr<WifiMacQueue> queue = GetQueue (node);
uint32_t value = queue->GetNPackets();
box->AddValue(value);

}
return box;

}

28

