Learning on Graphs

Michaël Defferrard

Networks and graphs

transportation (flights)
communication

hyperlinks

transportation (roads)

protein interaction

More:

- brain networks
- social networks

Motivation

$$
\begin{aligned}
& y=f(x)=\left\{\begin{array}{l}
" \text { "toxic" } \\
\text { "non-toxic" }
\end{array}\right. \\
& y=f(x)=80 \% \text { toxic }
\end{aligned}
$$

Goal: learn the unknown function f, using both structure and features.

Structure and features

Structure: graph (or network)

- Graph: a set of nodes (vertices) and a set of pairwise relations (edges)
- Relations: interactions, similarity, geometry

Features: data on the graph (or signal)

- Features: set of characteristics (or properties) about each node

Traditional ML uses features only. Our goal is to combine features and structure!

Using the structure

Extrinsic: embed the graph in an Euclidean space.

- Compute or learn a vector representation of each node.
- Use that embedding as additional features for a classifier.

Intrinsic: a Neural Net defined on graphically structured data.

- Exploit geometric structure for learning and computational efficiency.
- Starting point: ConvNet, an intrinsic formulation for Euclidean grids.

Convolutional Neural Networks

Main benefit (over MLPs): they exploit the structure of the data.

Key properties:

- Convolutional: translation equivariance (stationarity).
- Localized: deformation stability \& compact filters (independent of input size n).
- Multi-scale: hierarchical features extracted by multiple layers (compositionality).
- $\mathcal{O}(n)$ computational complexity.

ConvNets on graphs

Graphs vs Euclidean grids:

- Irregular sampling.
- Weighted edges.
- No orientation or ordering (in general) \rightarrow permutation invariance.

Ingredients:

- Convolution (local)
- Non-linearity (point-wise)
- Down-sampling (global / local)
- Pooling (local)

Challenge: efficient formulation of convolution and down-sampling on graphs.

Notation

$\mathcal{G}=(\mathcal{V}, \mathcal{E}, W):$ undirected and connected graph

- \mathcal{V} : set of $|\mathcal{V}|=n$ vertices
- \mathcal{E} : set of edges
- $W \in \mathbb{R}^{n \times n}$: weighted adjacency matrix
- $D_{i i}=\sum_{j} W_{i j}$: diagonal degree matrix

Graph Laplacians (core operator to spectral graph theory):

- combinatorial Laplacian $L=D-W \in \mathbb{R}^{n \times n}$
- normalized Laplacian $L=I_{n}-D^{-1 / 2} W D^{-1 / 2} \in \mathbb{R}^{n}$

Graph Fourier basis

Shuman, Narang, Frossard, Ortega, and Vandergheynst 2013
Definition: the Fourier basis diagonalizes the Laplacian operator $\rightarrow L=U \Lambda U^{\top}$

- Graph Fourier basis $U=\left[u_{1}, \ldots, u_{n}\right] \in \mathbb{R}^{n \times n}$
- Graph "frequencies" $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)=U^{\top} L U \in \mathbb{R}^{n \times n}$

Graph Fourier Transform

Shuman, Narang, Frossard, Ortega, and Vandergheynst 2013

- Graph signal $x: \mathcal{V} \rightarrow \mathbb{R}$ seen as $x \in \mathbb{R}^{n}$
- Transform: $\hat{x}=\mathcal{F}_{\mathcal{G}}\{x\}=U^{\top} x \in \mathbb{R}^{n}$
- Inverse: $x=\mathcal{F}_{\mathcal{G}}^{-1}\{x\}=U \hat{x}=U U^{\top} x=x$

Filtering

kernel a function $g: \mathbb{R} \rightarrow \mathbb{R}$ that defines the action of the filter
filter an operator acting on signals represented by $g(L)$
A signal $x \in \mathbb{R}^{|\mathcal{V}|}$ is filtered by the kernel g as:

$$
y=g(L) x=U g(\Lambda) U^{\top} x
$$

Step by step

1. take the Fourier transform: $\hat{x}=U^{\top} x$
2. take an element-wise product with the kernel evaluated at the eigenvalues:
$\hat{y}=\left(g\left(\lambda_{1}\right), \ldots, g\left(\lambda_{|\mathcal{V}|}\right)\right) \odot \hat{x}$
3. take the inverse Fourier transform: $y=U \hat{y}$

Example

Observation: the low-pass filtered signal y is much smoother than x !

Filter design

Task: design a kernel $g: \mathbb{R} \rightarrow \mathbb{R}$ such that $y=g(L) x$ is the solution of something interesting.

Examples

- Heat diffusion: $g_{\tau t}(\lambda)=\exp (-\tau t \lambda)$
- Wave propagation: $g_{\tau t}(\lambda)=\cos \left(t \arccos \left(1-\frac{\tau^{2}}{2} \lambda\right)\right)$
- Projection on a subspace: $g(\lambda)= \begin{cases}1 & \text { if } \lambda_{\min }<\lambda<\lambda_{\max }, \\ 0 & \text { otherwise } .\end{cases}$
- Denoising with $\arg \min _{y}\|y-x\|_{2}^{2}+\tau y^{\top} L y: g(\lambda)=\frac{1}{1+\tau \lambda}$

Example: wave propagation

$$
-\tau^{2} L f(t)=\partial_{t t} f(t) \quad \Rightarrow \quad f(t)=g_{\tau t}(L) f(0) \text { with } g_{\tau t}(\lambda)=\cos \left(t \arccos \left(1-\frac{\tau^{2}}{2} \lambda\right)\right)
$$

$f(0)$

$\hat{f}(10)=g_{1,10} \odot \hat{f}(0)$

Learning

What if we don't know the process by which y depends on x, and can't derive g ? Answer: learn the kernel from examples.

Task: approximate the optimal unknown mapping $y=g(L) x$ by a parameterized approximation $y \approx \tilde{y}=g_{\theta}(L) x$, where θ are the parameters to be learned.

We got:

- a set of examples $\left\{\left(x_{n}, y_{n}\right)\right\}_{n=1}^{N}$, hopefully large enough
- a cost function to measure how good our approximation is, for example $c(\tilde{y}, y)=\|\tilde{y}-y\|_{2}^{2}$

Goal: $\hat{\theta}=\arg \min _{\theta} \mathbf{E}_{(x, y)}\left[c\left(g_{\theta}(L) x, y\right)\right]$

Kernel parameterization

Defferrard, Bresson, and Vandergheynst 2016

Non-parametric filter, can learn any filter (n degrees of freedom):

$$
g_{\theta}(\Lambda)=\operatorname{diag}(\theta), \theta \in \mathbb{R}^{n} \Rightarrow y=U \operatorname{diag}(\theta) U^{\top} x
$$

Coarsening: hierarchical representation

Graph coarsening is certainly an answer to the down-sampling problem.

- Easy and well-defined when the domain has a hierarchical structure.
hard combinatorial problem \Rightarrow learn a continuous relaxation of the operation

Graph ConvNet architecture

Defferrard, Bresson, and Vandergheynst 2016

Input graph signals

e.g. bags of words \longrightarrow\begin{tabular}{c}
Feature extraction

Convolutional layers

\longrightarrow

Classification

Fully connected layers

\longrightarrow

Output signals

e.g. labels
\end{tabular}

Multiple kinds of problems: combination of data and tasks

Graphs that model discrete relations

- Social networks
- Graph of citations or hyperlinks
- Molecules (proteins)
- Knowledge graphs

Graphs that represent sampled manifolds

- Meshes (shapes, surfaces)
- Point clouds
- Data on spheres (planets, sky)
- Traffic on roads

Tasks:

- Node classification or regression (semi-supervized learning)
- Graph classification or regression
- Signal classification or regression

Application: segmentation of point clouds

remote sensing / surveying

indoor mapping

outdoor mapping

autonomous driving

Data

input a set of features associated to a set of points output a label associated to each point

x, y, z coordinates with RGB colors

class labels

Graph

Cherqui, Morsier, and Defferrard 2018

A graph gives:

- Neighborhood information, needed for consistent labeling.
- A support, needed for efficient computation.

RGB features

graph

labels

Model

Cherqui, Morsier, and Defferrard 2018

Characteristics:

- Dense prediction.
- Reason at multiple scales.
- Local decisions.

Main difficulties:

- Large number of points.
- Training samples are of varying sizes.

Conclusion

Filters can be designed to solve known problems.
If the transformation is unknown, learn filters from examples.
Successes:

- Convolution operation mostly solved (many formulations have been proposed for specific tasks) and understood (with multiple interpretations, including message-passing, local aggregation function, attention).
- Applications to many scientific and industrial problems

Challenges:

- Multiple scales, down-sampling, coarsening.
- Better understanding of the method - problem fit.

