
Applied Machine Learning Days Lausanne, 2019-01-28
AI & Networks track

Learning on Graphs

Michaël Defferrard

https://www.appliedmldays.org
https://www.appliedmldays.org/tracks/12

Networks and graphs

communication

hyperlinks

transportation (flights)

transportation (roads)

protein interaction

More:
I brain networks
I social networks

Image sources: 1, 2, 3, 4, 5
2 / 25

https://www.lucidchart.com/pages/templates/network-diagram/internet-network-diagram-template
https://github.com/mdeff/ntds_2018/blob/master/projects/slides/team_13.pdf
https://github.com/mdeff/ntds_2018/blob/master/projects/slides/team_12.pdf
https://www.openstreetmap.org
http://research.stowers.org/proteomics/ProtNetAnal.html

Motivation

x =
y = f(x) =

{
“toxic”
“non-toxic”

y = f(x) = 80% toxic

Goal: learn the unknown function f , using both structure and features.

3 / 25

Structure and features

Structure: graph (or network)

I Graph: a set of nodes (vertices) and a set of pairwise relations (edges)
I Relations: interactions, similarity, geometry

Features: data on the graph (or signal)

I Features: set of characteristics (or properties) about each node

Traditional ML uses features only. Our goal is to combine features and structure!

4 / 25

Using the structure

Extrinsic: embed the graph in an Euclidean space.

I Compute or learn a vector representation of each node.
I Use that embedding as additional features for a classifier.

Intrinsic: a Neural Net defined on graphically structured data.

I Exploit geometric structure for learning and computational efficiency.
I Starting point: ConvNet, an intrinsic formulation for Euclidean grids.

5 / 25

Convolutional Neural Networks

Main benefit (over MLPs): they exploit the structure of the data.

Key properties:
I Convolutional: translation equivariance (stationarity).
I Localized: deformation stability & compact filters (independent of input size n).
I Multi-scale: hierarchical features extracted by multiple layers (compositionality).
I O(n) computational complexity.

6 / 25

ConvNets on graphs
Graphs vs Euclidean grids:
I Irregular sampling.
I Weighted edges.
I No orientation or ordering (in general)
→ permutation invariance.

Ingredients:
I Convolution (local)
I Non-linearity (point-wise)
I Down-sampling (global / local)
I Pooling (local)

Challenge: efficient formulation of convolution and
down-sampling on graphs.

7 / 25

Notation

G = (V, E ,W): undirected and connected graph

I V: set of |V| = n vertices
I E : set of edges
I W ∈ Rn×n: weighted adjacency matrix
I Dii =

∑
jWij : diagonal degree matrix

Graph Laplacians (core operator to spectral graph theory):
I combinatorial Laplacian L = D −W ∈ Rn×n

I normalized Laplacian L = In −D−1/2WD−1/2 ∈ Rn

8 / 25

Graph Fourier basis
Shuman, Narang, Frossard, Ortega, and Vandergheynst 2013

Definition: the Fourier basis diagonalizes the Laplacian operator → L = UΛU>

I Graph Fourier basis U = [u1, . . . , un] ∈ Rn×n

I Graph “frequencies” Λ = diag(λ1, . . . , λn) = U>LU ∈ Rn×n

u>1 Lu1 = 0.00 u>2 Lu2 = 0.10 u>3 Lu3 = 0.10 u>4 Lu4 = 0.20 u>5 Lu5 = 0.38 u>6 Lu6 = 0.38 u>7 Lu7 = 0.48

u>1 Lu1 = 0.00 u>2 Lu2 = 0.33 u>3 Lu3 = 0.44 u>4 Lu4 = 0.86 u>5 Lu5 = 1.50 u>6 Lu6 = 1.59 u>7 Lu7 = 2.35

−0.2

0.0

0.2

−0.4

0.0

0.4

9 / 25

Graph Fourier Transform
Shuman, Narang, Frossard, Ortega, and Vandergheynst 2013

I Graph signal x : V → R seen as x ∈ Rn

I Transform: x̂ = FG{x} = U>x ∈ Rn

I Inverse: x = F−1
G {x} = Ux̂ = UU>x = x

xTLx = 0.48 xTLx = 2.75 xTLx = 6.88

0 4 8 12
graph frequency λ

0.00

0.25

0.50

0.75

fre
qu

en
cy

co
nt

en
tx̂

(λ
)

0 4 8 12
graph frequency λ

0.00

0.25

0.50

0.75

0 4 8 12
graph frequency λ

0.00

0.25

0.50

0.75

−0.2

0.0

0.2

−0.2

0.0

0.2

−0.2

0.0

0.2

10 / 25

Filtering

kernel a function g : R→ R that defines the action of the filter
filter an operator acting on signals represented by g(L)

A signal x ∈ R|V| is filtered by the kernel g as:

y = g(L)x = Ug(Λ)U>x

Step by step

1. take the Fourier transform: x̂ = U>x

2. take an element-wise product with the kernel evaluated at the eigenvalues:
ŷ = (g(λ1), . . . , g(λ|V|))� x̂

3. take the inverse Fourier transform: y = Uŷ

11 / 25

Example

xTLx = 61.93

input signal x in the vertex domain

0.0 2.5 5.0 7.5 10.0 12.5
graph frequency λ

0.0

0.2

0.4

0.6

0.8

1.0

fre
qu

en
cy

co
nt

en
tx̂

(λ
)

signals in the spectral domain

input signal x̂
kernel g
filtered signal ŷ

yTLy = 10.75

filtered signal y in the vertex domain

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

Observation: the low-pass filtered signal y is much smoother than x!

12 / 25

Filter design

Task: design a kernel g : R→ R such that y = g(L)x is the solution of something
interesting.

Examples

I Heat diffusion: gτt(λ) = exp(−τtλ)
I Wave propagation: gτt(λ) = cos

(
t arccos

(
1− τ2

2 λ
))

I Projection on a subspace: g(λ) =
{

1 if λmin < λ < λmax,

0 otherwise.
I Denoising with arg miny ‖y − x‖22 + τy>Ly: g(λ) = 1

1+τλ

13 / 25

Example: wave propagation

−τ2Lf(t) = ∂ttf(t) ⇒ f(t) = gτt(L)f(0) with gτt(λ) = cos
(
t arccos

(
1− τ2

2 λ
))

0 2 4 6 8
λ

−1

0

1

2

ĝ
(λ

):
fil

te
rr

es
po

ns
e

f̂(0) = g1,0 � f̂(0)

f̂(0)
g1,0

0 2 4 6 8
λ

−1

0

1

f̂(5) = g1,5 � f̂(0)

f̂(5)
g1,5

0 2 4 6 8
λ

−1

0

1

f̂(10) = g1,10 � f̂(0)

f̂(10)
g1,10

0 2 4 6 8
λ

−1

0

1

f̂(20) = g1,20 � f̂(0)

f̂(20)
g1,20

f(0) f(5) f(10) f(20)

0

1

2

3

4

5

−2

−1

0

1

−1.0

−0.5

0.0

0.5

−1.0

−0.5

0.0

0.5

14 / 25

Learning

What if we don’t know the process by which y depends on x, and can’t derive g?
Answer: learn the kernel from examples.

Task: approximate the optimal unknown mapping y = g(L)x by a parameterized
approximation y ≈ ỹ = gθ(L)x, where θ are the parameters to be learned.

We got:
I a set of examples {(xn, yn)}Nn=1, hopefully large enough
I a cost function to measure how good our approximation is,

for example c(ỹ, y) = ‖ỹ − y‖22

Goal: θ̂ = arg minθ E(x,y)[c(gθ(L)x, y)]

15 / 25

Kernel parameterization
Defferrard, Bresson, and Vandergheynst 2016

Non-parametric filter, can learn any filter (n degrees of freedom):

gθ(Λ) = diag(θ), θ ∈ Rn ⇒ y = U diag(θ)U>x

0 2 4 6 8 10 12 14
λ: laplacian’s eigenvalues / graph frequencies

0.0

0.2

0.4

0.6

0.8

1.0
ĝ
(λ

):
fil

te
rr

es
po

ns
e

16 / 25

Coarsening: hierarchical representation

Graph coarsening is certainly an answer to the down-sampling problem.

I Easy and well-defined when the domain has a hierarchical structure.
17 / 25

Learned coarsening: an attention mechanism
Defferrard and Loukas 2018

hard combinatorial problem ⇒ learn a continuous relaxation of the operation

Conditioned on:
1. the structure
2. the features
3. the task

introspection!

18 / 25

Graph ConvNet architecture
Defferrard, Bresson, and Vandergheynst 2016

Classification
Fully connected layers

Feature extraction
Convolutional layers

Input graph signals
e.g. bags of words

Output signals
e.g. labels

Graph signal filtering
1. Convolution

2. Non-linear activation

Graph coarsening
3. Sub-sampling
4. Pooling

19 / 25

Multiple kinds of problems: combination of data and tasks

Graphs that model discrete relations
I Social networks
I Graph of citations or hyperlinks
I Molecules (proteins)
I Knowledge graphs

Graphs that represent sampled manifolds
I Meshes (shapes, surfaces)
I Point clouds
I Data on spheres (planets, sky)
I Traffic on roads

Tasks:
I Node classification or regression (semi-supervized learning)
I Graph classification or regression
I Signal classification or regression

20 / 25

Application: segmentation of point clouds

remote sensing / surveying

indoor mapping

outdoor mapping

autonomous driving

21 / 25

Data

input a set of features associated to a set of points
output a label associated to each point

x,y,z coordinates with RGB colors class labels

22 / 25

Graph
Cherqui, Morsier, and Defferrard 2018

A graph gives:
I Neighborhood information, needed for consistent labeling.
I A support, needed for efficient computation.

RGB features graph labels

23 / 25

Model
Cherqui, Morsier, and Defferrard 2018

64RGBZ

128 256
512

256
64

BN + graph conv K=5 + BN + Relu

Graph conv K=1 + softmax

Max Pooling size=4 + graph conv K=5 + BN + Relu

Unpooling with repetitions + graph conv K=5 + BN

Graph conv K=5 + BN

128

N
A node with N features

512

Characteristics:
I Dense prediction.
I Reason at multiple scales.
I Local decisions.

Main difficulties:
I Large number of points.
I Training samples are of varying sizes.

24 / 25

Conclusion

Filters can be designed to solve known problems.
If the transformation is unknown, learn filters from examples.

Successes:
I Convolution operation mostly solved (many formulations have been proposed for

specific tasks) and understood (with multiple interpretations, including
message-passing, local aggregation function, attention).

I Applications to many scientific and industrial problems

Challenges:
I Multiple scales, down-sampling, coarsening.
I Better understanding of the method – problem fit.

25 / 25

