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More:
» brain networks

» social networks
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https://www.lucidchart.com/pages/templates/network-diagram/internet-network-diagram-template
https://github.com/mdeff/ntds_2018/blob/master/projects/slides/team_13.pdf
https://github.com/mdeff/ntds_2018/blob/master/projects/slides/team_12.pdf
https://www.openstreetmap.org
http://research.stowers.org/proteomics/ProtNetAnal.html
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Goal: learn the unknown function f, using both structure and features.
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Structure and features

Structure: graph (or network)

» Graph: a set of nodes (vertices) and a set of pairwise relations (edges)

P Relations: interactions, similarity, geometry

Features: data on the graph (or signal)

> Features: set of characteristics (or properties) about each node

Traditional ML uses features only. Our goal is to combine features and structure!
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Using the structure

Extrinsic: embed the graph in an Euclidean space.

» Compute or learn a vector representation of each node.

» Use that embedding as additional features for a classifier.

Intrinsic: a Neural Net defined on graphically structured data.

» Exploit geometric structure for learning and computational efficiency.

» Starting point: ConvNet, an intrinsic formulation for Euclidean grids.

5/25



Convolutional Neural Networks

Main benefit (over MLPs): they exploit the structure of the data.

Feature maps

Convolutions Subsampling Convolutions Subsampling  Fully connected

Key properties:
» Convolutional: translation equivariance (stationarity).
» Localized: deformation stability & compact filters (independent of input size n).
» Multi-scale: hierarchical features extracted by multiple layers (compositionality).
» O(n) computational complexity.
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ConvNets on graphs
Graphs vs Euclidean grids:

» Irregular sampling.
> Weighted edges.

» No orientation or ordering (in general)
— permutation invariance.

Ingredients:
» Convolution (local)
» Non-linearity (point-wise)
» Down-sampling (global / local)
» Pooling (local)

Challenge: efficient formulation of convolution and
down-sampling on graphs.
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Notation

G = (V,&E,W): undirected and connected graph

> V: set of |V| = n vertices

> &: set of edges

> W e R™™™: weighted adjacency matrix
> D = Zj Wi;: diagonal degree matrix

Graph Laplacians (core operator to spectral graph theory):
» combinatorial Laplacian L = D — W € R™*™
» normalized Laplacian L = I,, — D~Y/2WD~1/2 ¢ R"
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Graph Fourier basis
Shuman, Narang, Frossard, Ortega, and Vandergheynst 2013

Definition: the Fourier basis diagonalizes the Laplacian operator — L = UAU "

» Graph Fourier basis U = [u1,...,u,] € R™"
» Graph “frequencies” A = diag(\y,...,\,) = U LU € R™*"

uf Luy = 0.00 uy Luy = 0.10 ug Lug = 0.10 uy Lug = 0.20 ug Lus = 0.38 ug Lug = 0.38 uj Luy = 0.48
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Graph Fourier Transform
Shuman, Narang, Frossard, Ortega, and Vandergheynst 2013

» Graph signal x : V — R seen as v € R"
» Transform: & = Fg{z} =U'x € R"
» Inverse: z = .7-"9_1{33} =Us=UU"z=2x
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Filtering
kernel a function g : R — R that defines the action of the filter
filter an operator acting on signals represented by g(L)
A signal z € RVl is filtered by the kernel g as:

y=g(L)x=Ug(A)U "z

Step by step

1. take the Fourier transform: 2 = U "z

2. take an element-wise product with the kernel evaluated at the eigenvalues:
7=(9(M),---,9(\y) ©2
3. take the inverse Fourier transform: y = U{
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Example

input signal z in the vertex domain signals in the spectral domain filtered signal y in the vertex domain
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graph frequency A

Observation: the low-pass filtered signal y is much smoother than z!
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Filter design

Task: design a kernel g : R — R such that y = g(L)z is the solution of something
interesting.

Examples
» Heat diffusion: g;+(\) = exp(—7t\)
» Wave propagation: g,¢+(\) = cos (t arccos (1 — gA))

1 if Min < A < Mnazs

» Projection on a subspace: g(\) = {0 therw
otherwise.

> Denoising with arg min,, ||y — |3 + y ' Ly: g(\) = ﬁ
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Example: wave propagation

~TLf(t) = 0uf(t) = f(t) = gre(L)F(0) with gre(X) = cos (t arccos (1 - %2)‘))

£(0) = g10© f(0) 15) = 915 © f(0) £(10) = g110® £(0) £(20) = g120© (0)
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Learning

What if we don’t know the process by which y depends on x, and can’t derive g7
Answer: learn the kernel from examples.

Task: approximate the optimal unknown mapping y = g(L)x by a parameterized
approximation y ~ § = gg(L)x, where 0 are the parameters to be learned.

We got:
> a set of examples {(z,,,y,)}2_;, hopefully large enough

P a cost function to measure how good our approximation is,
for example ¢(g,y) = |17 — ylI3

Goal: § = argmin, E () [c(go(L)7,y)]
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Kernel parameterization

Defferrard, Bresson, and Vandergheynst 2016

Non-parametric filter, can learn any filter (n degrees of freedom):

go(A) = diag(f), § e R"* = y = Udiag(0)U =

§g(A): filter response
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Coarsening: hierarchical representation

Graph coarsening is certainly an answer to the down-sampling problem.

» Easy and well-defined when the domain has a hierarchical structure.

17/25



Learned coarsening: an attention mechanism
Defferrard and Loukas 2018

hard combinatorial problem = learn a continuous relaxation of the operation
Conditioned on:
1. the structure

2. the features
3. the task

introspection!
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Graph ConvNet architecture
Defferrard, Bresson, and Vandergheynst 2016

Input graph signals > Feature extraction

e.g. bags of words Convolutional layers

5@%_, /;ﬁ”
-> @g/ﬁ---“ Graph coarsening

> Classification > Output signals

e.g. labels

Fully connected layers

Frm—————-

0=XM <A< )‘Ml,1

. L \*. 3. Sub-sampling
Graph signal filtering Y ® 4. Pooling
1. Convolution \+/(\.
2. Non-linear activation °
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Multiple kinds of problems: combination of data and tasks

Graphs that model discrete relations Graphs that represent sampled manifolds
» Social networks » Meshes (shapes, surfaces)
» Graph of citations or hyperlinks » Point clouds
» Molecules (proteins) » Data on spheres (planets, sky)
» Knowledge graphs » Traffic on roads
Tasks:

» Node classification or regression (semi-supervized learning)
» Graph classification or regression

» Signal classification or regression
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Application: segmentation of point clouds

indoor mapping autonomous driving
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Data

input a set of features associated to a set of points

output a label associated to each point

x,y,z coordinates with RGB colors class labels
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Graph

Cherqui, Morsier, and Defferrard 2018

A graph gives:
» Neighborhood information, needed for consistent labeling.

» A support, needed for efficient computation.

RGB features graph labels
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Model

Cherqui, Morsier, and Defferrard 2018

RGBZ

— BN +graph conv K=5 + BN + Relu  —— Max Pooling size=4 + graph conv K=5 + BN + Relu N—> Graph conv K=5 + BN

— Graph conv K=1 + softmax — Unpooling with repetitions + graph conv K=5 + BN y Anode with N features

Characteristics: C e )
Main difficulties:

» Dense prediction. )
P » Large number of points.

P> Reason at multiple scales.

» Local decisions.

» Training samples are of varying sizes.
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Conclusion

Filters can be designed to solve known problems.
If the transformation is unknown, learn filters from examples.

Successes:

» Convolution operation mostly solved (many formulations have been proposed for
specific tasks) and understood (with multiple interpretations, including
message-passing, local aggregation function, attention).

» Applications to many scientific and industrial problems

Challenges:
» Multiple scales, down-sampling, coarsening.
» Better understanding of the method — problem fit.
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