
DETECTREE: TREE
DETECTION FROM

AERIAL IMAGERY IN
PYTHON

Martí Bosch

January 23, 2020
1

TYPES OF URBAN
TREE CANOPY

DATASETS

2 . 1

URBAN TREE CATALOGS
Format: geo-referenced list of trees

Example: Cantonal inventory of isolated trees
(Geneva)

2 . 2

https://ge.ch/sitg/sitg_catalog/data_details/00b1b15d-b64e-44ab-93c6-fa9b5ed8e9ad/xhtml_raw

URBAN TREE CATALOGS
PROS

O�en comes with valuable attributes (e.g.,
dimensions, species, age…)

2 . 3

URBAN TREE CATALOGS
CONS

Costly: manual surveys
O�en restricted to public space

2 . 4

CANOPY HEIGHT MODELS
Format: raster of tree height values

Example: Canopy height model (Montreal)

2 . 5

http://donnees.ville.montreal.qc.ca/dataset/modele-numerique-de-canopee-mnc

CANOPY HEIGHT MODELS
PROS

Can be automatically derived from raw LIDAR
data, i.e., classified cloud of points

2 . 6

CANOPY HEIGHT MODELS
CONS

LIDAR data is expensive
Building canopy height models requires raw
LIDAR data (surface and terrain models are not
enough)
Few open raw LIDAR datasets

2 . 7

WHAT DOES
DETECTREE DO?

3 . 1

IDEA IN A NUTSHELL
Input: high resolution aerial imagery
Output: binary raster of tree/non-tree pixels

3 . 2

IDEA IN A NUTSHELL

Example: DetecTree output (right) for Zurich’s
2014/15 Orthophoto (le�)

3 . 3

https://www.geolion.zh.ch/geodatensatz/2831

IDEA IN A NUTSHELL
SUPERVISED LEARNING

The training set S = {(xi, yi), i = {1, …, M}} is a sample of
M pixels, each represented by a:

27-component feature vector: xi ∈ ℝ27, with
information of color, texture and entropy
binary response: yi ∈ {0, 1}, with yi = 1 if pixel i
actually corresponds to a tree, yi = 0 otherwise

3 . 4

THE IDEA IS NOT MINE
Approach proposed by Yang et al. in 2009
Others have implemented as well:

[1]
Mapping All of

the Trees with Machine Learning

3 . 5

https://doi.org/10.1145/1653771.1653792
https://medium.com/descarteslabs-team/descartes-labs-urban-trees-tree-canopy-mapping-3b6c85c5c9cc

HOWEVER
To my knowledge, DetecTree is the first open source

tool to perform such a task

3 . 6

OVERVIEW OF THE
COMPUTATIONAL

WORKFLOW

4 . 1

STEP 0: SPLIT IMAGE INTO TILES
Input: aerial imagery raster for the area of interest

The dataset might already come as a mosaic of
tiles
Otherwise, you might use DetecTree’s

 functionsplit_into_tiles

4 . 2

https://detectree.readthedocs.io/en/latest/utils.html#detectree.split_into_tiles

STEP 1: TRAIN/TEST SPLIT
We might use random sampling to select, e.g., 1% of

the tiles as training data, however …

… the training tiles should be as representative as
possible of the overall dataset

4 . 3

STEP 1: TRAIN/TEST SPLIT
How do we optimize the representativity of the

training set?

1. For each tile, compute a GIST descriptor , i.e., a
vector describing key semantics of the tile’s scene

2. Apply k-means to the GIST descriptors to get k
clusters of tiles, with k= size of the training set

3. For each cluster, select the tile that is closest to
the cluster’s centroid for training

[2]

4 . 4

https://doi.org/10.1023/A:1011139631724

STEP 1: TRAIN/TEST SPLIT

img_filepath train

0 data/interim/tiles/1091-322_00.tif False

1 data/interim/tiles/1091-142_20.tif False

2 data/interim/tiles/1091-124_11.tif False

3 data/interim/tiles/1091-144_21.tif False

4 data/interim/tiles/1091-213_05.tif False

split_df = dtr.TrainingSelector(
 img_dir='path/to/tiles').train_test_split(
 method='cluster-I')
split_df.head()

4 . 5

STEP 1: TRAIN/TEST SPLIT

img_filepath train

28 data/interim/tiles/1091-231_12.tif True

98 data/interim/tiles/1091-144_06.tif True

172 data/interim/tiles/1091-231_07.tif True

In we have 225 tiles. A training sample of
1% needs 2.25 tiles, thus

, i.e., k = 3

split_df[split_df['train']]

this example
DetecTree automatically sets

k to the ceil of such number

4 . 6

https://github.com/martibosch/detectree-example
https://detectree.readthedocs.io/en/latest/train_test_split.html#detectree.TrainingSelector.train_test_split

STEP 3: GET THE TRAINING
GROUND-TRUTH TREE/NON-

TREE MASK
For each tile of the training set, we need to
provide the ground-truth tree/non-tree masks to
get the pixel-level responses  yi , ∀i ∈ {1, …, M}
We might use GIMP, Adobe Photoshop or LIDAR
data (see the repository)detectree-example

4 . 7

https://github.com/martibosch/detectree-example

STEP 4: TRAIN A BINARY PIXEL-
LEVEL CLASSIFIER

Given the pixel-level responses, DetecTree will
compute the pixel-level features  xi , ∀i ∈ {1, …, M}

and train a binary classifier of the form:

f : ℝ → {0, 1} i.e., ŷi = f(xi)

where ŷi is the tree (yi = 1)/non-tree (yi = 0) prediction
for pixel i

4 . 8

STEP 4: TRAIN A BINARY PIXEL-
LEVEL CLASSIFIER

response_dir is where the response tiles are
located
clf is the training classifier, i.e.,

 clf = dtr.ClassifierTrainer().train_classifier(
 split_df=split_df, response_img_dir=response_dir)

scikit-learn’s
AdaBoostClassifier

4 . 9

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html

STEP 5: PIXEL-LEVEL
CLASSIFICATION

Given the trained classifier clf, we might use the
 method as follows:classify_img

 y = dtr.Classifier().classify_img(
 'path/to/some/tile.tif', clf)

4 . 10

https://detectree.readthedocs.io/en/latest/pixel_classification.html#detectree.Classifier.classify_img

STEP 5: PIXEL-LEVEL
CLASSIFICATION

Which will give us something like:

4 . 11

4 . 12

STEP 5: PIXEL-LEVEL
CLASSIFICATION

Note: the pixel-level classification predicts each
pixel independently, which might yield noisy
results, e.g., sparse points on grass fields labeled
as trees
Following the approach of Yang et al. ,
DetecTree refines the pixel-level classification to
ensure consistency between adjacent pixels using
the graph cuts algorithm of Boykov and
Kolmogorov .

[1]

[3]
4 . 13

https://doi.org/10.1145/1653771.1653792
https://doi.org/10.1109/TPAMI.2004.60

STEP 5: PIXEL-LEVEL
CLASSIFICATION

Original tile (le�), pixel-level classification (middle),
refined classification (right)

4 . 14

STEP 5: PIXEL-LEVEL
CLASSIFICATION

We can use the method directly on
the train/test split dataframe split_df to classify all

the tiles at scale with :

classify_imgs

Dask

 dtr.Classifier().classify_imgs(
 split_df, 'path/to/output/dir, clf=clf)

4 . 15

https://detectree.readthedocs.io/en/latest/pixel_classification.html#detectree.Classifier.classify_imgs
https://dask.org/

PROS OF DETECTREE
Many available datasets of HRO, e.g.,

Modest memory requirements compared to
LIDAR, e.g., Geneva:

LIDAR (25 pt/m2): 310 GB
SWISSIMAGE (1m): 1 GB

NAIP open
dataset: Continental USA at the 0.6 to 1m
resolution

4 . 16

https://registry.opendata.aws/naip/

CONS OF DETECTREE
Only provides binary pixel-level classification
If tree species/dimensions are important,
DetecTree is not the best

4 . 17

SCOPE OF DETECTREE
When we are only interested in 2D aspects of
trees, e.g., proportion of land cover/spatial
distribution
LIDAR is not available
LIDAR is available but it is too expensive
LIDAR is available but you don’t want to process
300GB of data

4 . 18

EXAMPLE
APPLICATION:
URBAN HEAT
ISLANDS IN
LAUSANNE

5 . 1

OBJECTIVE
Given a land cover map (10m), predict the spatial

distribution of air temperature

5 . 2

APPROACH: INVEST URBAN
COOLING MODEL

For each pixel:

 Tair ∼ f ( ET , shade , albedo )

However: pixels of the same land cover, e.g.,
road, can have very different levels of tree cover
(which influences the ET, shade, albedo…)

5 . 3

ENTER DETECTREE
Refine each land cover class into subclasses
depending on the level of tree cover
For example, pixels of “road” land cover are
further divided into

“road with high tree cover”
“road with intermediate tree cover”
“road with low tree cover”

5 . 4

ENTER DETECTREE
We go from 25 to 100 land use classes …

… which will likely increase the precision of the model
predictions

5 . 5

RESULTS OF THE STUDY COMING
SOON

5 . 6

THANK YOU

6 . 1

REFERENCES

7 . 1

1. Yang, L., Wu, X., Praun, E., & Ma, X. (2009). Tree detection
from aerial imagery. In Proceedings of the 17th ACM
SIGSPATIAL International Conference on Advances in
Geographic Information Systems (pp. 131-137). ACM.

2. Oliva, A., & Torralba, A. (2001). Modeling the shape of
the scene: A holistic representation of the spatial
envelope. International journal of computer vision,
42(3), 145-175.

3. Boykov, Y., & Kolmogorov, V. (2004). An experimental
comparison of min-cut/max-flow algorithms for energy
minimization in vision. IEEE Transactions on Pattern
Analysis & Machine Intelligence, (9), 1124-1137.

7 . 2

