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machine learning positioned to have huge impact on health care



Potential Bottlenecks

data set prediction servicetraining



Potential Bottlenecks

data set prediction servicetraining

data access 
(liability and controlled use)



Potential Bottlenecks

data set prediction servicetraining

data access 
(liability and controlled use)

risk management 
(store and process)



Potential Bottlenecks

data set prediction servicetraining

data access 
(liability and controlled use)

risk management 
(store and process)

incentive 
(accuracy and exposure)



Potential Bottlenecks

data set prediction servicetraining

data access 
(liability and controlled use)

risk management 
(store and process)

incentive 
(accuracy and exposure)

leakage 
(model and training data)



Differential Privacy

data set prediction servicetraining

data access 
(liability and controlled use)

risk management 
(store and process)

incentive 
(accuracy and exposure)

leakage 
(model and training data)



Differential Privacy

trainingsanitised data set sanitised prediction

data access 
(liability and controlled use)

risk management 
(store and process)

incentive 
(accuracy and exposure)

leakage 
(model and training data)



Differential Privacy

trainingsanitised data set sanitised prediction

data access 
(liability and controlled use)

risk management 
(store and process)

incentive 
(accuracy and exposure)

leakage 
(model and training data)



Differential Privacy

trainingsanitised data set sanitised prediction

data access 
(liability and controlled use)

risk management 
(store and process)

incentive 
(accuracy and exposure)

leakage 
(model and training data)



Differential Privacy

trainingsanitised data set sanitised prediction

data access 
(liability and controlled use)

risk management 
(store and process)

incentive 
(accuracy and exposure)

leakage 
(model and training data)



Differential Privacy

trainingsanitised data set sanitised prediction

data access 
(liability and controlled use)

risk management 
(store and process)

incentive 
(accuracy and exposure)

leakage 
(model and training data)



Secure Computation

data set prediction servicetraining

data access 
(liability and controlled use)

risk management 
(store and process)

incentive 
(accuracy and exposure)

leakage 
(model and training data)



Secure Computation

encrypted trainingencrypted data set encrypted prediction

data access 
(liability and controlled use)

risk management 
(store and process)

incentive 
(accuracy and exposure)

leakage 
(model and training data)



Secure Computation

encrypted trainingencrypted data set encrypted prediction

data access 
(liability and controlled use)

risk management 
(store and process)

incentive 
(accuracy and exposure)

leakage 
(model and training data)



Secure Computation

encrypted trainingencrypted data set encrypted prediction

data access 
(liability and controlled use)

risk management 
(store and process)

incentive 
(accuracy and exposure)

leakage 
(model and training data)



Secure Computation

encrypted trainingencrypted data set encrypted prediction

data access 
(liability and controlled use)

risk management 
(store and process)

incentive 
(accuracy and exposure)

leakage 
(model and training data)



Secure Computation

encrypted trainingencrypted data set encrypted prediction

data access 
(liability and controlled use)

risk management 
(store and process)

incentive 
(accuracy and exposure)

leakage 
(model and training data)



Hybrid

data set prediction servicetraining

data access 
(liability and controlled use)

risk management 
(store and process)

incentive 
(accuracy and exposure)

leakage 
(model and training data)



Hybrid

encrypted trainingencrypted data set encrypted + sanitised 
prediction

data access 
(liability and controlled use)

risk management 
(store and process)

incentive 
(accuracy and exposure)

leakage 
(model and training data)



Hybrid

encrypted trainingencrypted data set encrypted + sanitised 
prediction

data access 
(liability and controlled use)

risk management 
(store and process)

incentive 
(accuracy and exposure)

leakage 
(model and training data)



Hybrid
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prediction

data access 
(liability and controlled use)

risk management 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incentive 
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(model and training data)

privacy to mitigate bottlenecks
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(also great summary in https://eprint.iacr.org/2017/1190)

CryptoNets: Applying Neural Networks to Encrypted Data with High Throughput and Accuracy, Dowlin et al.

SecureML: A System for Scalable Privacy-Preserving Machine Learning, Mohassel and Zhang

DeepSecure: Scalable Provably-Secure Deep Learning, Rouhani et al.

SecureNN: Efficient and Private Neural Network Training, Wagh et al.

Gazelle: A Low Latency Framework for Secure Neural Network Inference, Juvekar et al.

Recent research papers using secure computation

ABY3: A Mixed Protocol Framework for Machine Learning, Mohassel and Rindal

Blind Justice: Fairness with Encrypted Sensitive Attributes, Kilbertus et al.
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tf-encrypted

open source project for exploring and experimenting with  
privacy-preserving machine learning in TensorFlow

separate concerns, take expertise out of equation, 
and provide tight integration with ecosystem
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Thank you!
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Secure computation distributes trust and control, 
and is complementary to e.g. differential privacy

Privacy-preserving ML is a multidisciplinary field  
benefitting from adaptations on both sides

Focus on usability and integration


