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Deep Learning in 3D

Object extraction from
point clouds




3D Models of Cities: Valuable and Expensive

The Digital Twin story

Lower the cost of GIS-grade content
acquisition by providing workflows for
[semi-Jautomated objects extraction from

point clouds, imagery, meshes.



What is LIDAR data?

Massive 3D point collections with additional attributes like:

- Intensity,

- Number of Returns,

- Scan Angle,

RGE’ .




What is LIDAR data?

Massive 3D point collections with additional attributes like:

Intensity,

Number of Returns,
Scan Angle,
RGB,...




What can be extracted from point clouds?

3D building models

- schematic, or
- detailed (up to RGB+D textures)

Electric grid

- overhead conductors, poles, stay wires, transformers, etc.

Trees

- canopy polygons, precise height

Street furniture
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Building models: Realism vs Cubism

1. High fidelity models of historical buildings and cityscape features which are considered stable
and never / rarely undergo any modifications.

- Manually crafted models,
- Often have designated budgets for creation,

- Rarely updated.

2. Schematic-like models of commercial, industrial, residential zones which develop and change
often.

Have the largest area,

Need to be re-evaluated periodically for taxation and regulatory purposes,

Must be evaluated first and fast in case of a natural disaster, e.g. earthquake,

The process must be quick, accurate enough, and cost effective.



PoC: 3D Building model reconstruction from aerial LIDAR

Rasterized Aerial LiDAR Manually digitized Hip 3D reconstruction of
(purple) and Gable building using manually
(orange) segments digitized segments




PoC: 3D Building model reconstruction from aerial LIDAR

- Manually digitizing roof segments:

- Over 3,000 man hours were spent on digitizing about 213,000 polygons covering the area of 200
square miles.

- ~70 polygons / man hour.

b) Hip

d) Mansard e) Vault f) Dome



- Using Mask R-CNN to digitize roof segments

- Not as accurate as humans,
but much faster: 60,000 polygons / hour.

- Regularize Building Footprints helps with
accuracy.
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Objects extracted from
RASTERIZED airborne
point cloud:

Schematic Building

Models

Miami_Demo - Scene - ArcGIS Pro
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Objects extracted from
airborne
point cloud:



Buildings: Working directly with point clouds

Today ArcGIS allows for reconstruction of buildings directly from point
clouds using released GP Tools.

The “LASBuildingMultipatch” workflow:

1. ClassifyLASGround
2. ClassifyLASBuilding
3. LASPointStatisticsAsRaster 5. EliminatePolygonPart

- with LAS layer filtered on class 6 (building) 6. RegularizeBuildingFootprint
- using the ‘Most Frequent Class Code’ option

7. LASDatasetToRaster

- with input LAS layer filtered on class 2 points to
make DEM

4. RasterToPolygon

8. LASBuildingMultipatch




Buildings: Working directly with point clouds

Models contain many faces and are not suitable for manual editing.

Noise level depends on accuracy of point cloud classification.




Can we use Deep Learning to label point clouds?

- Point clouds are irregular and unordered, cannot apply convolution ops directly.

- Good news: multiple developments, DL architectures, and papers in recent years: PointNet++,
Graph Convolutional networks, Deep Sets, PointCNN, etc.




Buildings: Working directly with point clouds

- PointCNN trained to classify buildings in airborne point cloud




LASBuildingMultipatch workflow:
with & w/o PointCNN-labeled
building points

- Lower noise level in resulting building
models

- PointCNN after 6.5 hours (GV100) of
training on XYZ-geometry only.
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PoC: Wires detection in airborne LiDAR

AAM Group, Australia: collecting airborne LIDAR point clouds to detect the power lines and
any easement encroachment.

50,000 man
hours per year of §
manual labeling §




PoC: Wires detection in airborne LiDAR

- AAM Group shared 10B+ of manually labeled points to train a neural network.

- Thousands of miles of transmission lines.

Four object classes:
1. - Wire
Stay Wire

2
3. Pole
4




PoC: Overhead conductor inspection

...but there are some good news too -

Intensity and the
Number of Returns
on the Wire points is
 often different than of
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) This allows for
training PointCNN on
XYZ +
Intensity +
Number of Returns




PoC: Overhead conductor inspection

3§ PointCNN Predictions X

Training & Results:
after training on a single GV100 for ~20 hours
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B = o~ -3 LAS Dataset Layer PointCNN-Utrecht - Scene-Utrecht - ArcGIS Pro ? = X
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B = “- s LAS Dataset Layer PointCNN-Utrecht - Scene-Utrecht - ArcGIS Pro ? = X
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S s LAS Dataset Layer CycloMedia-sample - Scene-RGB - ArcGIS Pro ? = X
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PoC: PointCNN in Mobile Point Clouds

CycloMedia’s “CycloRama” sample point cloud with synced 360-imagery
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PoC: PointCNN in Mobile Point Clouds

After ~36 hours of training on GV100:
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PoC: PointCNN in Mobile Point Clouds

After ~24 hours of training on GV100:
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Object extraction from labeled
point cloud: Trees




PoC: PointCNN in Mobile Point Clouds

- Traffic Lights are harder:

- Small number of samples
~580,000 points (0.032%)

- Different types, attachment
options

- Located at most noisy
intersections
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PoC: PointCNN in Mobile Point Clouds

After ~72 hours of training on GV100:
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Precision = .655

Recall = .704

F1-Score = .679




Objects extracted from labeled point cloud: ® #1—Traffic light
Traffic Ilg htS . #2 — Noise filtered out by DBScan
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Objects extracted from
labeled point cloud:

Traffic lights



Want to
Know
more”?

medium.com/geoal

« Reconstructing 3D buildings from aerial LIDAR with Al
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» 3D cities: Deep Learning in three-dimensional space
* PointCNN: replacing 50,000 man hours with Al
* Object extraction from Mobile LiDAR point clouds with

Machine Learning

 ...and much more
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