

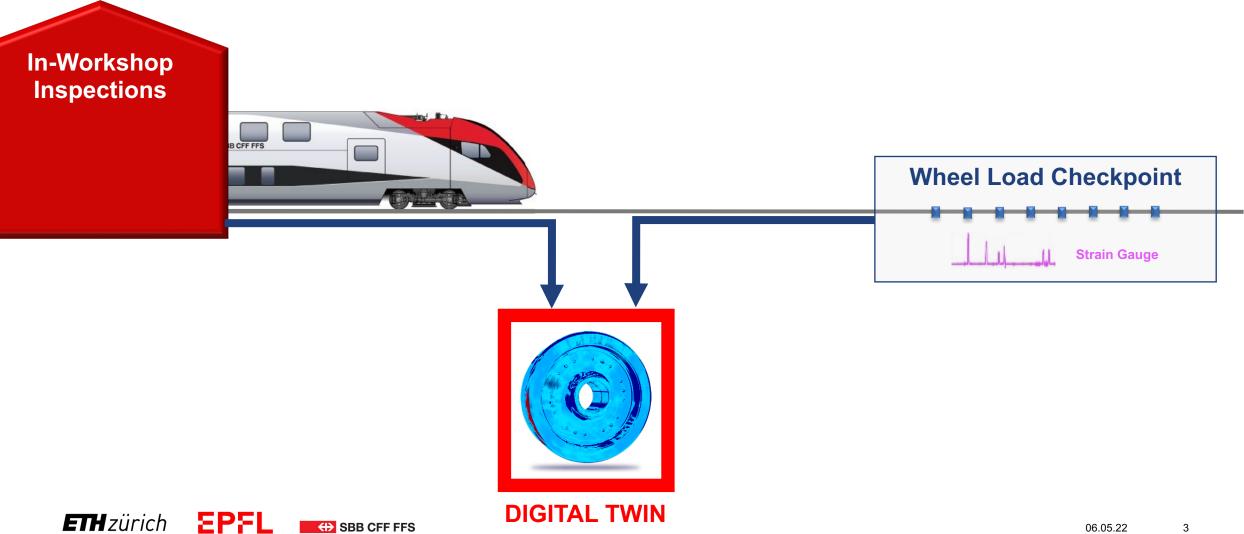
Chair of Intelligent Maintenance Systems

Towards a Data-driven Operational Digital Twin for Railway Wheels

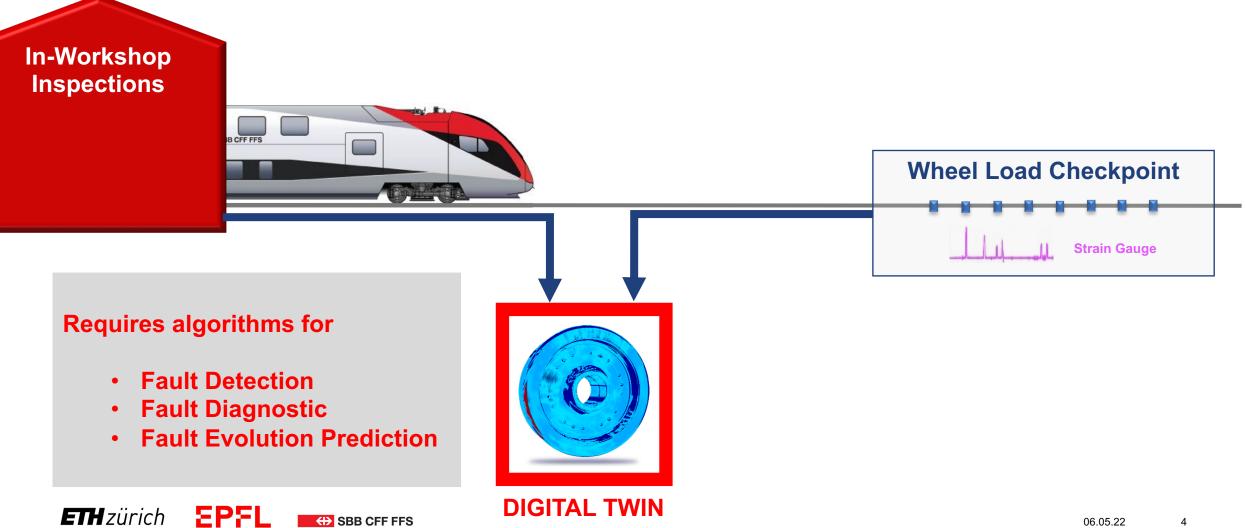
Katharina Rombach, Dr. Gabriel Michau, Prof. Olga Fink

Wayside Monitoring of Railway Wheels

Wayside Monitoring Data to a Data-driven Digital Twin



Wayside Monitoring Data to a Data-driven Digital Twin



Challenges for Data-driven Solutions

Requires algorithms for

- Fault Detection
- Fault Diagnostic
- Fault Evolution Prediction

Faults are rare

Fault data not available

Challenges for data-driven solutions

Requires algorithms for

- **Fault Detection**
- **Fault Diagnostic**
- **Fault Evolution Prediction**

Controlable Factors Uncontrolable Factors Health Factors Operating Conditions, Environmental Factors, ... Fault Types, Fault Severities, New Components, Ambient Different loads, Faults are rare Temperature velocities Fault data not available

Different Factors of Variations in the Data

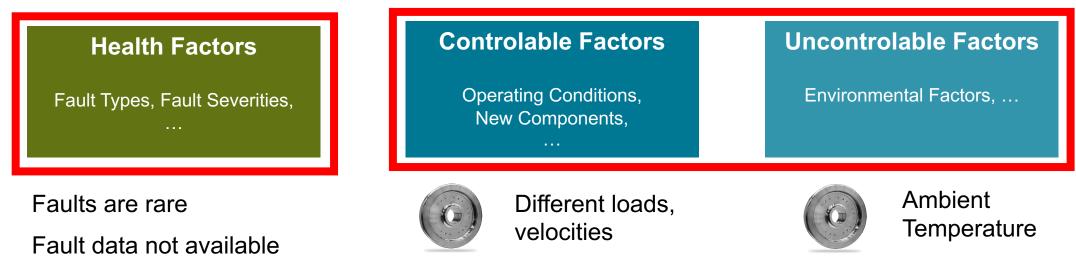
Challenges for data-driven solutions

Requires algorithms for

ETH zürich

- Fault Detection
- Fault Diagnostic
- Fault Evolution Prediction

Distinguishing these factors can be difficult



Often the available dataset is not representative!

Data-driven fault detection and diagnostics model fail!

Objective

Objective 1:

Sensitivity to Faults

Health Factors

Fault Types & Severities, ...

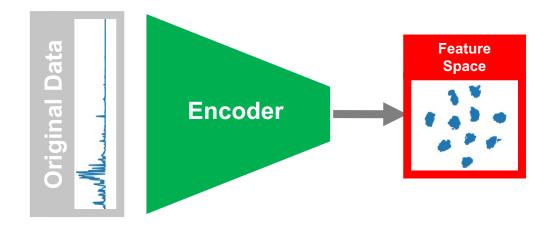
Objective 2: Invariance to any fluctuation caused by «other» factors Controlable Factors Uncontrolable Factors

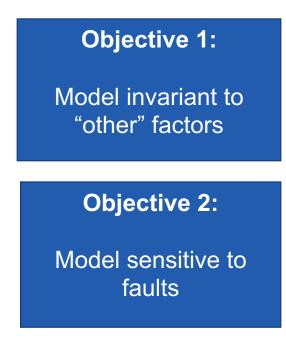
Operating Conditions, ...

Environmental Factors, ...

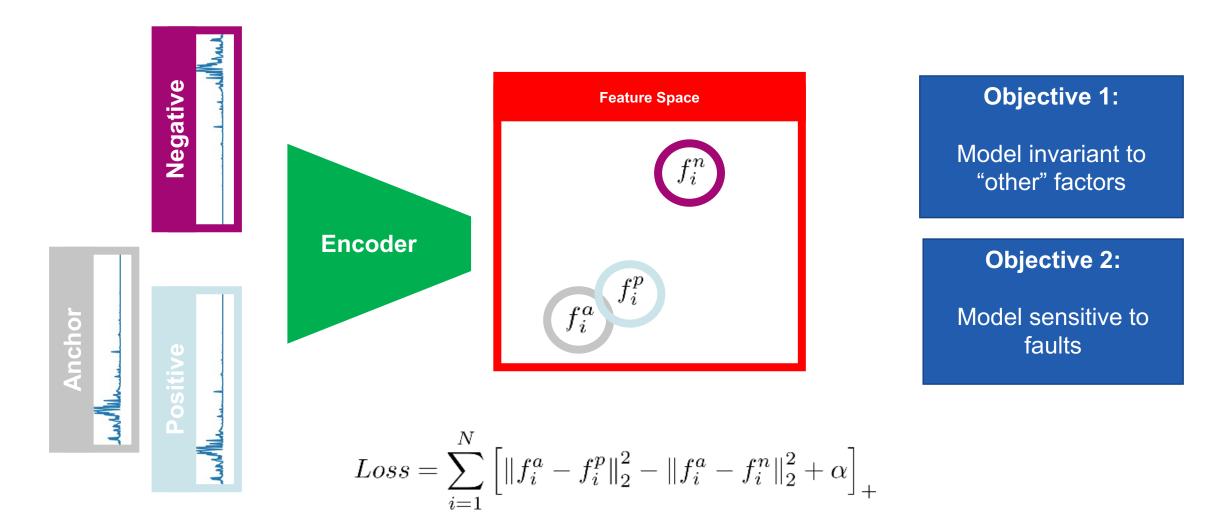
Learn a Suitable Feature Representation

Crriplet





Contrastive Feature Learning – Triplet Loss



Schroff, Florian, Dmitry Kalenichenko, and James Philbin. "Facenet: A unified embedding for face recognition and clustering." *Proceedings of the IEEE conference on computer vision and pattern recognition*. 2015.

Challenge Contrastive Feature Learning

Data Representation

Objective 1:

Model invariant to "other" factors

Objective 2:

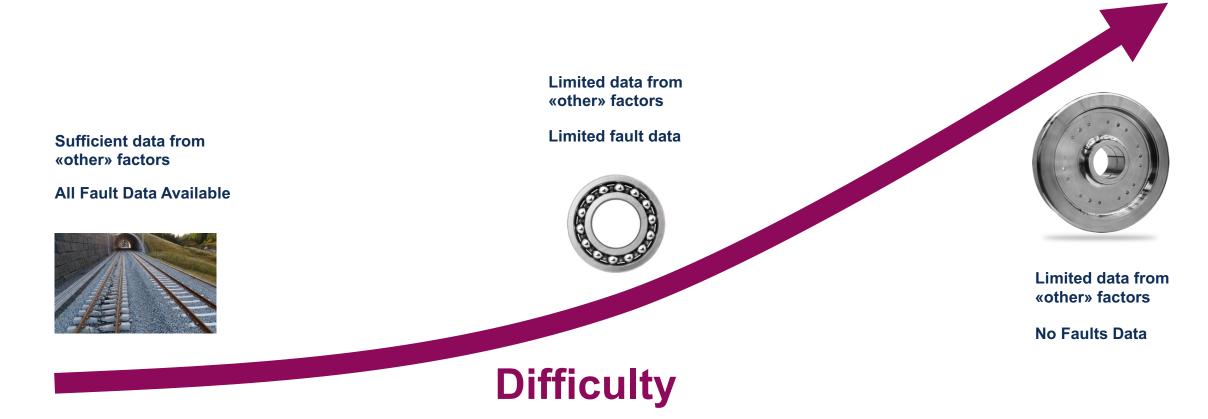
Model sensitive to faults

Applications

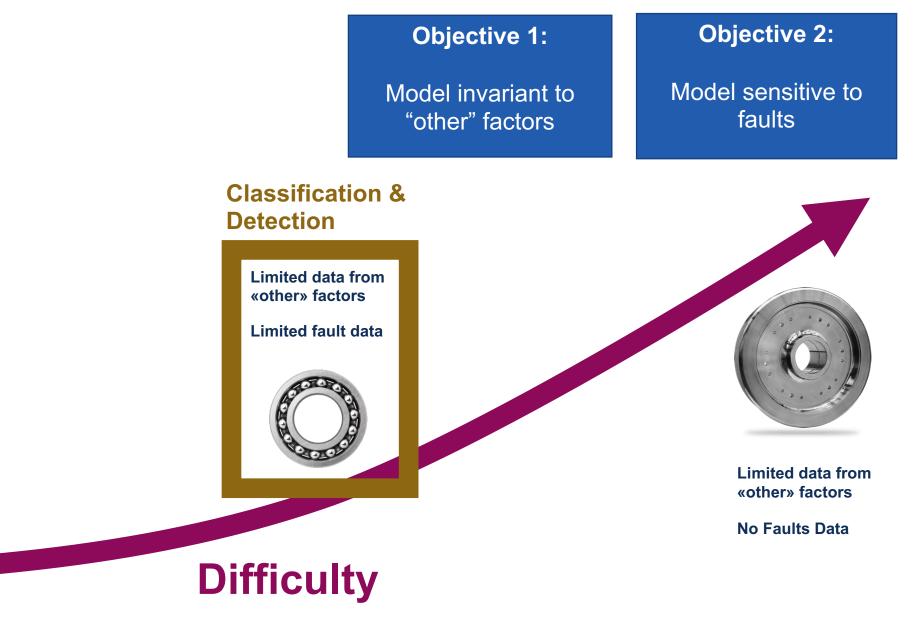
Objective 1:

Model invariant to "other" factors **Objective 2:**

Model sensitive to faults



Applications

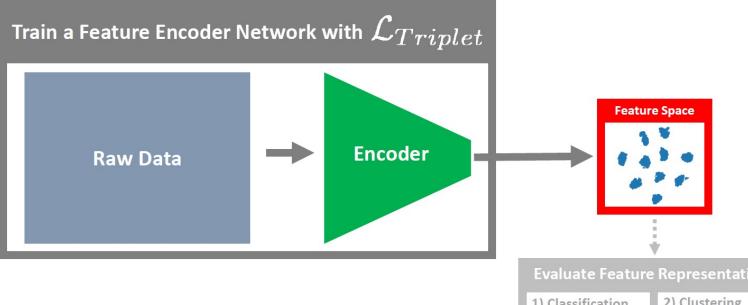


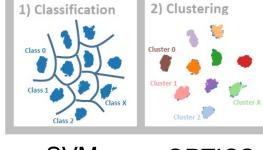
Sufficient data from «other» factors

All Fault Data Available

ETH ZURICH EPFL SBB CFF FFS

Methodology





SVM OPTICS

Objective 1:

Model invariant to "other" factors

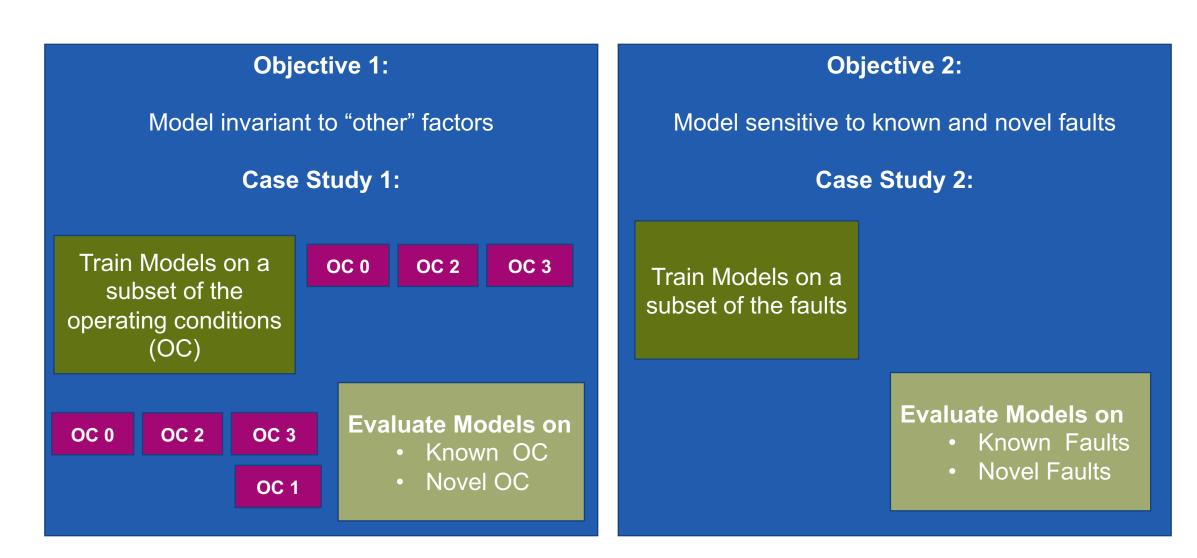
Objective 2:

Model sensitive to known and novel faults

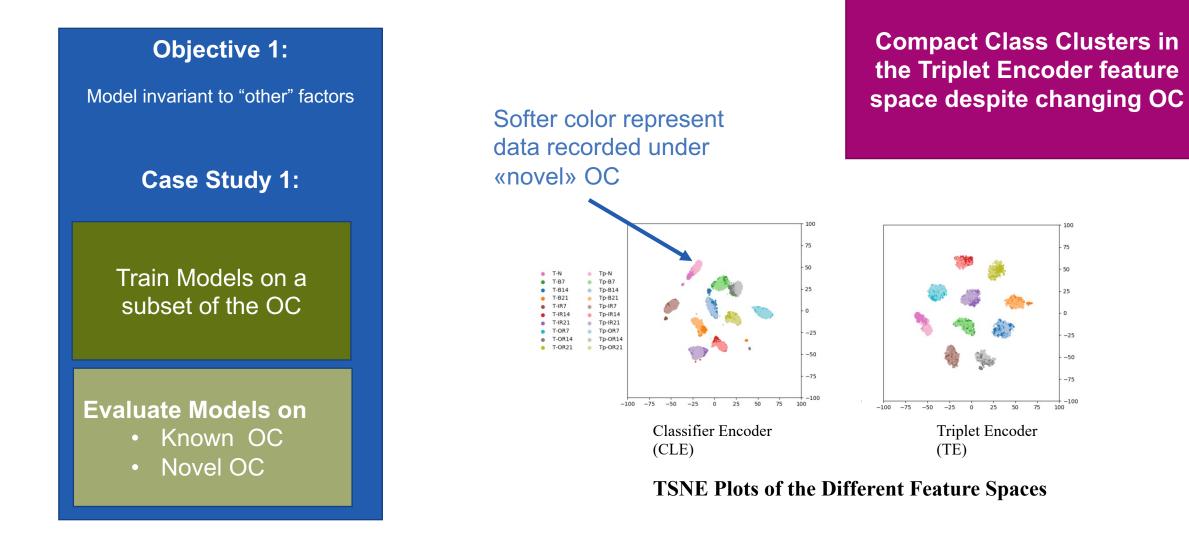
Scenario:

Limited data from «other» factors Limited fault data

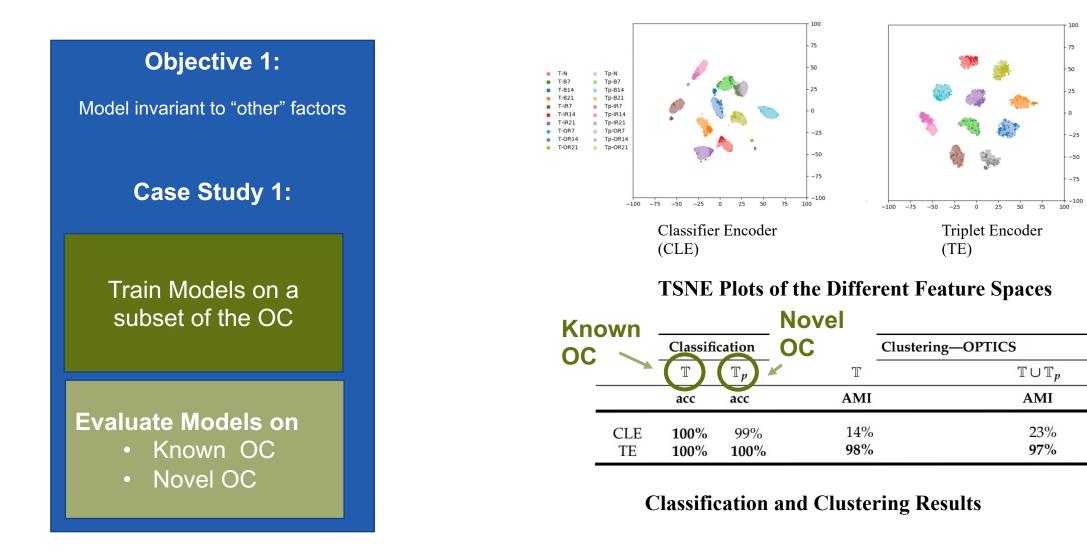
Application on a bearing dataset (CWRU dataset)



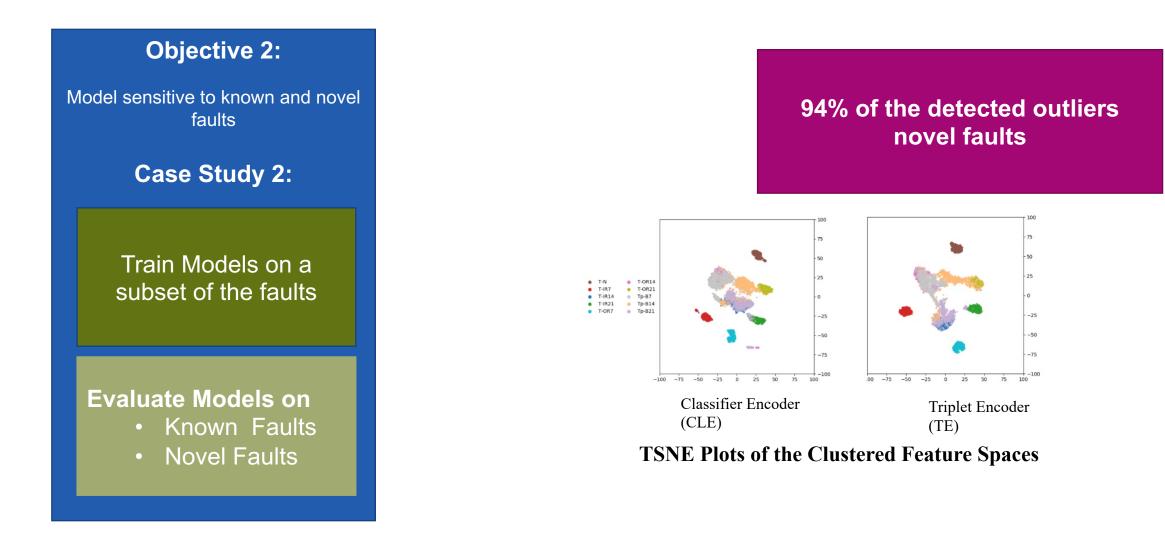
Case Study 1: Classification and Clustering Results on Various Operating Conditions



Case Study 1: Classification and Clustering Results on Various Operating Conditions

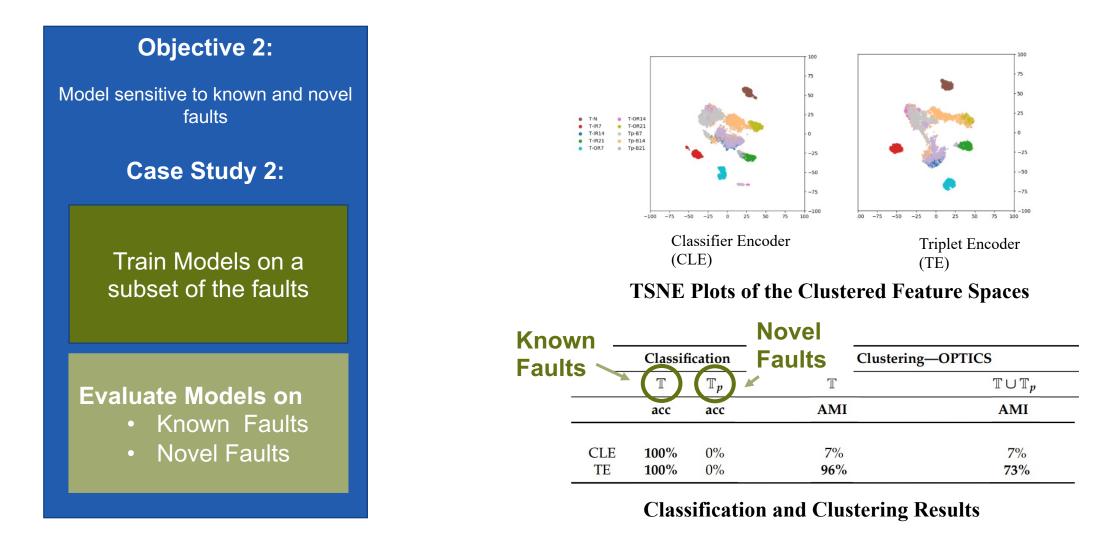


Case Study 2: Classification and Clustering Results with Novel Faults



ETH zürich EPFL SBB CFF FFS

Case Study 2: Classification and Clustering Results with Novel Faults



Applications

Objective 1:Model invariant to
"other" factorsModel sensitive to
faultsAnomaly
Detection

Limited data from «other» factors

Limited fault data

Limited data from «other» factors

No Faults Data

Sufficient data from «other» factors

All Fault Data Available

Applications

Objective 1:Objective 2:Model invariant to
"other" factorsModel sensitive to
faultsModel sensitive to
faultsModel sensitive to
faults

Limited data from «other» factors

Limited fault data

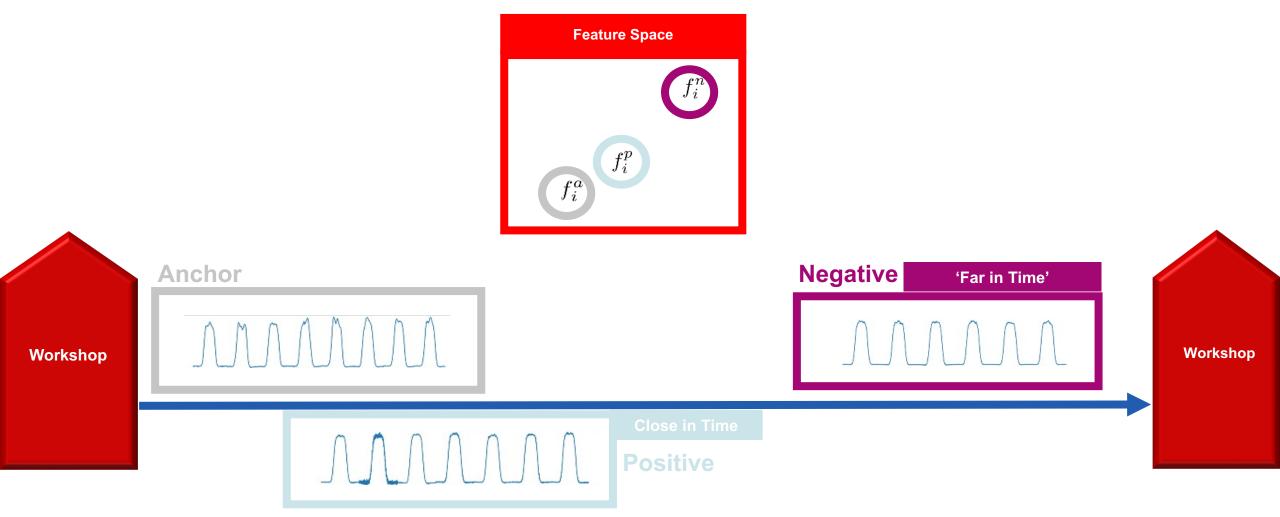
Limited data from «other» factors

No Faults Data

Sufficient data from «other» factors

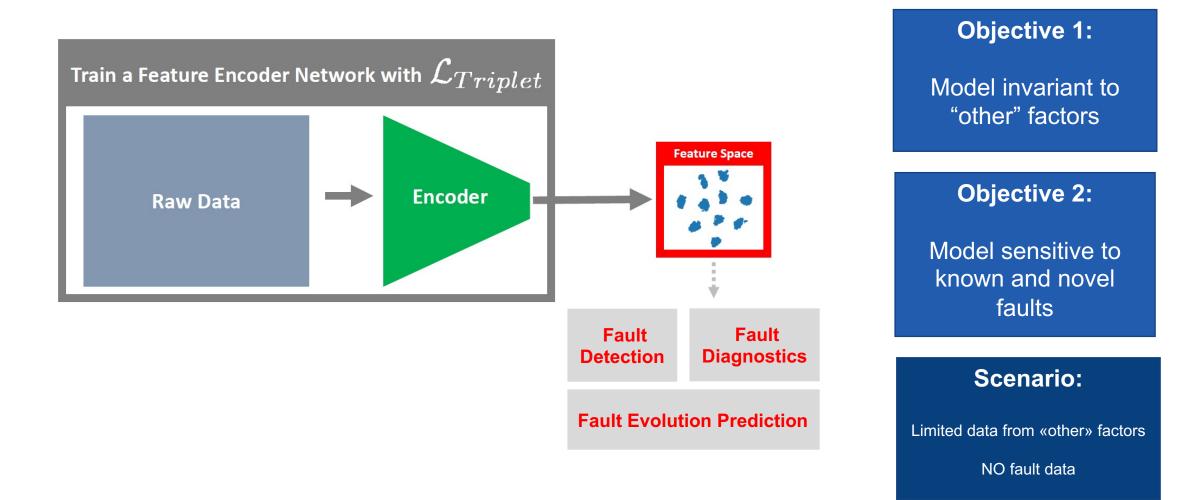
All Fault Data Available

Unsupervised Contrastive Learning in Time

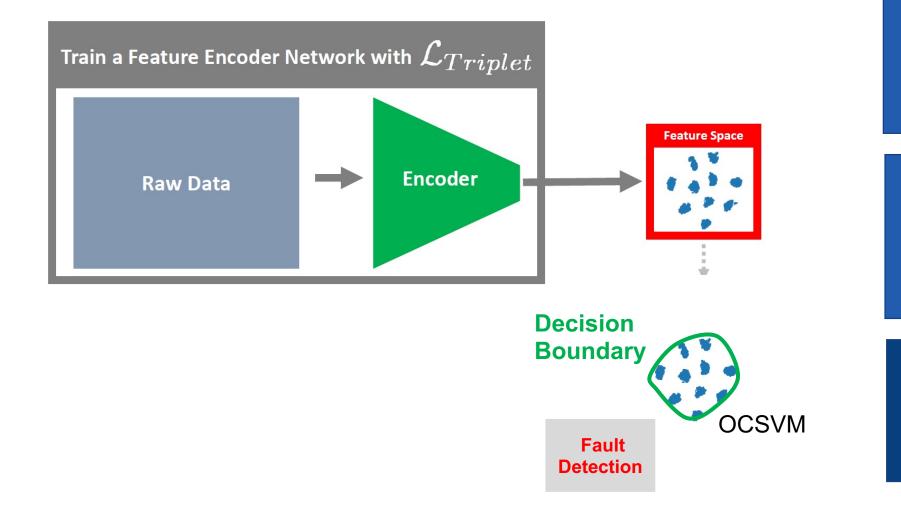


Franceschi, Jean-Yves, Aymeric Dieuleveut, and Martin Jaggi. "Unsupervised scalable representation learning for multivariate time series." Advances in neural information processing systems 32 (2019).

Methodology



Methodology



Objective 1:

Model invariant to "other" factors

Objective 2:

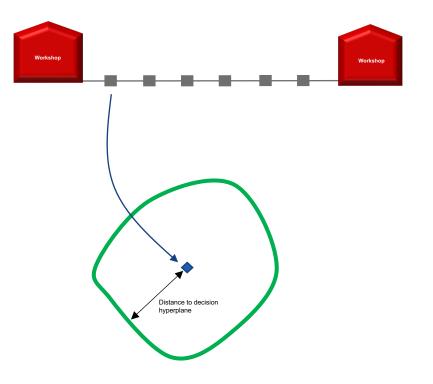
Model sensitive to known and novel faults

Scenario:

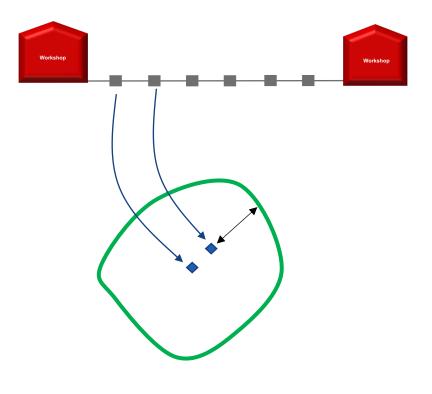
Limited data from «other» factors

NO fault data

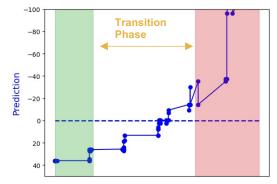
Visualization Median

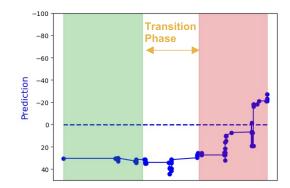


Visualization Median

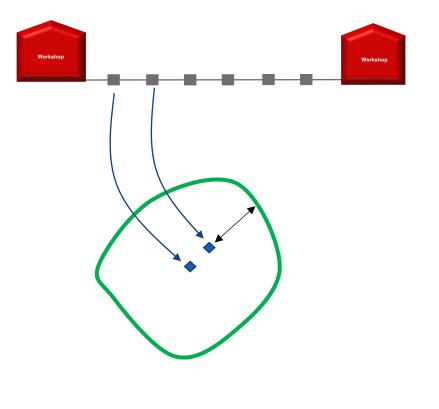


Fault Trajectories

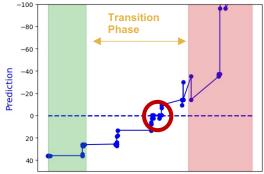


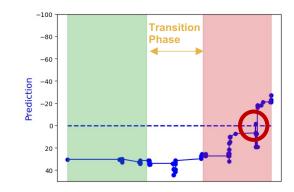


Visualization Median

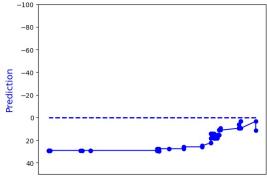


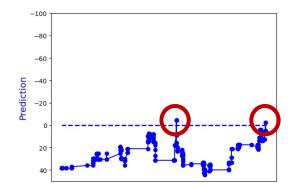
Fault Trajectories





Healthy Trajectories





Wayside Monitoring Data to a Data-driven Digital Twin



Thank you!

ETH zürich Intelligent Maintenance Systems

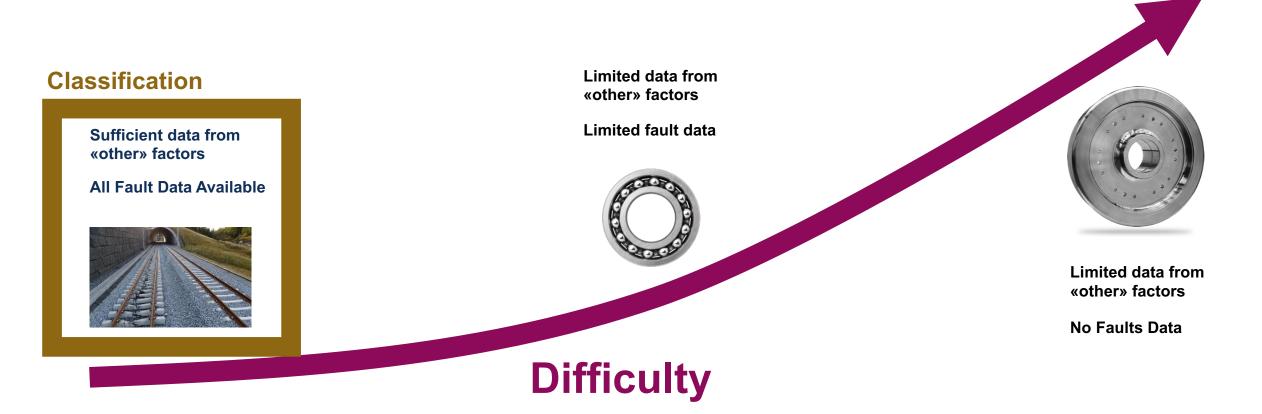
Applications

Objective 1:

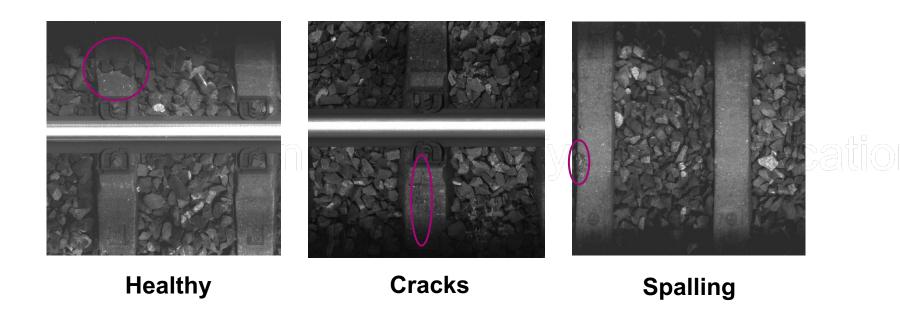
Model invariant to "other" factors

Objective 2:

Model sensitive to faults



Application 1: Defect Type Classification of Sleepers



Objective 1:

Model invariant to "other" factors

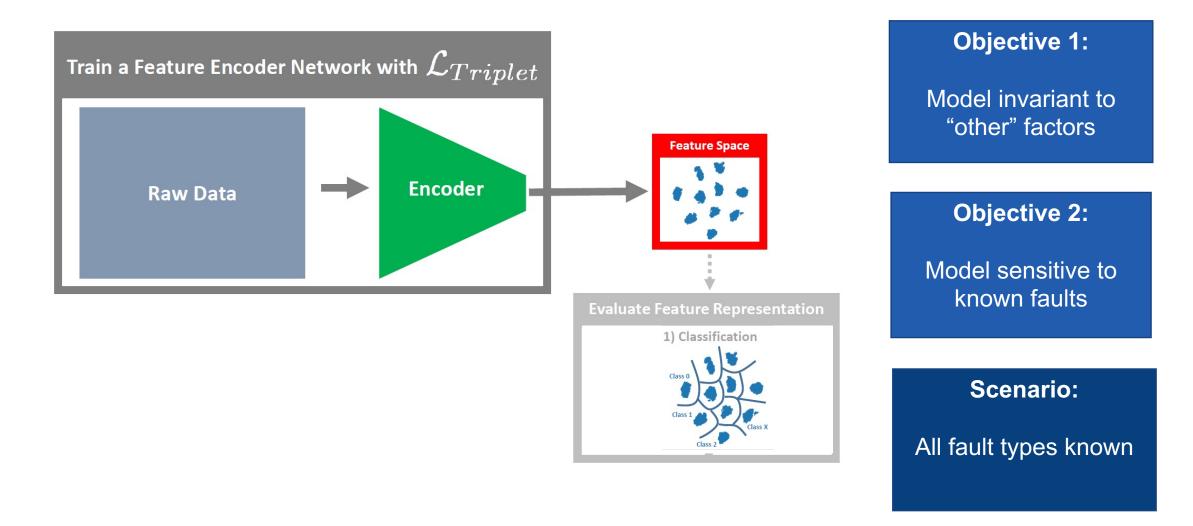
Objective 2:

Model sensitive to known faults

Scenario:

All fault types known

Application 1: Defect Type Classification of Sleepers



ETH zürich Intelligent Maintenance Systems

Results Application 1: Defect Type Classification of Sleepers

	Classification \mathbb{T}
	acc
CLE	81%
TE	94%

