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Wayside Monitoring Data to a Data-driven Digital Twin
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Requires algorithms for

• Fault Detection
• Fault Diagnostic
• Fault Evolution Prediction

Challenges for data-driven solutions

Often the available dataset is not representative!

Controlable Factors

Operating Conditions, 
New Components, 

…

Uncontrolable Factors

Environmental Factors, …

Health Factors

Fault Types, Fault Severities, 
…

Faults are rare

Fault data not available

Different loads, 
velocities

Ambient 
Temperature

Data-driven fault detection and diagnostics model fail!

Distinguishing these factors can be difficult



06.05.22 8

Objective

Objective 2: 

Invariance to any fluctuation caused by «other» factors

Controlable Factors
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Uncontrolable Factors
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: Objective 1: 

Sensitivity to Faults

Health Factors

Fault Types & Severities, …



Learn a Suitable Feature Representation
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Contrastive Feature Learning – Triplet Loss 
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Schroff, Florian, Dmitry Kalenichenko, and James Philbin. "Facenet: A unified embedding for face recognition and clustering." Proceedings of the IEEE conference on computer vision and pattern recognition. 2015.
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Methodology
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Application on a bearing dataset  (CWRU dataset)
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Case Study 1: Classification and Clustering Results on Various 
Operating Conditions
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Compact Class Clusters in 
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Case Study 1: Classification and Clustering Results on Various 
Operating Conditions
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Case Study 2: Classification and Clustering Results with Novel 
Faults 
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Case Study 2: Classification and Clustering Results with Novel 
Faults 
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Unsupervised Contrastive Learning in Time
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Franceschi, Jean-Yves, Aymeric Dieuleveut, and Martin Jaggi. "Unsupervised scalable representation learning for multivariate time series." Advances in neural information processing systems 32 (2019).



Methodology
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Visualization Median
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Visualization Median
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Visualization Median
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Thank you!
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Application 1: Defect Type Classification of Sleepers
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All fault types known
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Application 1: Defect Type Classification of Sleepers
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All fault types known
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Results Application 1: Defect Type Classification of Sleepers
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+ 13% accuracy gain


