Rooftop Solar Potential through Image Segmentation and Structured Data

Rooftop Solar Potential through Image Segmentation and Structured Data

Daniel Soares daniels@namr.com 28 january 2020 <u>namr.com</u>

nam.R: overview

nam.R is a Paris-based company founded in 2017

We provide data-driven solutions to projects in fields such as Energy, Renovation, Insurance and Retail

We also sell access to our unified database called Digital Twin

Domains of expertise:

- Computer Vision
- Natural Language Processing
- Geographic Information Systems

Rooftop Solar Potential through Image Segmentation and Structured Data

Objective: predict the solar potential of residential and non-residential rooftops

First version: more than 500,000 buildings in Southern France

Rooftop Solar Potential through Image Segmentation and Structured Data

Five steps to predict solar potential

Rooftop Solar Potential through Image Segmentation and Structured Data

Roof Segmentation: Image Segmentation

- Training set : image + 30,000 rasterized roof slope geometries
- Segmentation with a pixel-wise classification
- U-Net with a ResNet34
- Ridge/Slope Accuracy : 77.3%

[1] O. Renneberger, P. Fischer, T. Brox, "U-Net: Convolutional Networks for Biomedical Image Segmentation" (2015).

Rooftop Solar Potential through Image Segmentation and Structured Data

Roof Segmentation: Post-processing

- Roof Segmentation is regularized with geometric operations using PostGIS
- Slope's Azimuth obtained through spatial considerations
- Pitch is estimated using a Random Forest regressor with building structured features

Rooftop Solar Potential through Image Segmentation and Structured Data

Roof objects detection

- Roof object classification and segmentation
- Same architecture than roof segmentation
- Training set : Tagging campaign
- Low accuracy (IoU = 30.2%) mainly because of too few training data

Rooftop Solar Potential through Image Segmentation and Structured Data

Module Packing

- Size dimensions for a given module
- Greedy packing algorithms on a roof slope
- Remove modules intersecting obstructing objects

Rooftop Solar Potential through Image Segmentation and Structured Data

Annual Solar Potential

solar potential (kWh/year) = $N_{panels} \times P_{max} \times PV_{out}$

- N_{Panels} => maximum number of solar modules on a roof slope
- P_{max} (*kW*) => module nominal maximum power
- PV_{OUT} (kWh/kW/year) => specific photovoltaic power output

Rooftop Solar Potential through Image Segmentation and Structured Data

Conclusion

- Prediction of rooftops solar potential through aerial images and structured data
- Needs improvement: object detection and pitch prediction
- Solar energy is part of our larger offer on energy and building renovation
- Next step: scale our solutions to other parts of the world

Come meet us on Wednesday at booth 117!

Rooftop Solar Potential through Image Segmentation and Structured Data

Daniel Soares daniels@namr.com 28 january 2020 <u>namr.com</u>