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Agenda

● Intro to Diode Lasers
● Problem formulation and example data
● FasterRCNN Model
● Example results
● Possible extensions
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Lasers

● In a laser light is amplified by 
stimulated emission from a system 
that can exist in two states with 
different energies.

● In a diode laser this is achieved by 
using a junction between p and n 
type semiconductors.
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Diode Lasers

● In a P type semiconductor charge 
is conducted by “holes” with 
missing electrons

● In an N type semiconductor it is 
conducted by extra electrons

● A PN junction normally only lets 
charge through in one direction 
(this is a diode).

● When a voltage is applied in the 
“wrong” direction a photon can 
move an electron across and act as 
a laser
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Problem formulation

● We want to find defects on both 
the “top” (p-side) and the front and 
back “edges” (facet)

● Images are taken using a 
microscope with a rotating 
assembly to allow access to all 
three axes.
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Data
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(Front / Back) Facet P-Side
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Faster RCNN
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● Multi Scale feature maps are extracted 
from a CNN encoder.

● These are concatenated and fed into a 
CNN region proposal network to predict 
candidate regions.

● Classifier and bounding box regression 
networks are used to predict bounding 
boxes and classes.

● The network can use a pretrained 
encoder and be fine tuned end to end.
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Implementation details

● Implemented in Pytorch Lightning
● Large dataset labeled by FBH 256
● Trained on 800x800 pixel chunks
● Metrics used were:

○ F1 50|50 (objectness threshold | intersection threshold)
○ mAP (Mean average precision at different thresholds)

● Boxes predicted across multiple chunks are sewn together
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Example Results: Facet
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Example Results: Facet
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Example Results: Facet
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Example Results: Facet
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Example Results: Facet
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Example Results: P-side
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Example Results: P-side
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Example Results: P-side
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Takeaways

● Object detection models are well suited for defect detection in 
semiconductors.

● The most common failure cases are:
○ Crowded regions
○ Multiple detections
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Possible Extensions

● Move to segmentation:
○ Advantages

■ Easier to train
■ More precise information on defects

○ Disadvantages
■ More time consuming labelling

● Wrap the model in an active learning environment.

19


