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Lasers

e Inalaserlightis amplified by
stimulated emission from a system
that can exist in two states with
different energies.

e Inadiode laser this is achieved by
using a junction between p and n
type semiconductors.
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Diode Lasers

e Ina P type semiconductor charge
is conducted by "holes” with
missing electrons

e Inan N type semiconductor itis

top contact

cladding (P)
output facet

conducted by extra electrons active layer
. . ladding (N)
e A PN junction normally only lets s

charge through in one direction
(this is a diode).

e When avoltage is applied in the
“wrong” direction a photon can
move an electron across and act as
a laser
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Problem formulation

e We want to find defects on both
the “top” (p-side) and the front and
back "edges” (facet)

e Images are taken using a
microscope with a rotating
assembly to allow access to all
three axes.
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Faster RCNN
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Multi Scale feature maps are extracted
from a CNN encoder.

These are concatenated and fed into a
CNN region proposal network to predict
candidate regions.

Classifier and bounding box regression
networks are used to predict bounding
boxes and classes.

The network can use a pretrained
encoder and be fine tuned end to end.

Region Proposal
Network

CNN Encoder Block 3

CNN Encoder Block 2

CNN Encoder Block 1

Image Input




Implementation details

Implemented in Pytorch Lightning

Large dataset labeled by FBH 256

Trained on 800x800 pixel chunks

Metrics used were:
o F150|50 (objectness threshold | intersection threshold)
o mMAP (Mean average precision at different thresholds)

e Boxes predicted across multiple chunks are sewn together



Example Results: Facet
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Example Results: P-side
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Example Results: P-side
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Takeaways

e Object detection models are well suited for defect detection in
semiconductors.
e The most common failure cases are:
o Crowded regions
o Multiple detections
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Possible Extensions

e Move to segmentation:
o Advantages
m FEasiertotrain
m More precise information on defects
o Disadvantages
m  More time consuming labelling
e \Wrap the model in an active learning environment.



