

Al and Education: The need for a system change

Dr Mutlu Cukurova University College London

m.cukurova@ucl.ac.uk

@mutlucukurova

Knowledge Lab

Institute of Education

Education systems are broader than what current Artificial Intelligence *alone* can provide.

Promise of AI in Education

Access to Education

Decrease Teacher Workload

Personalised Effective Education

Equity in Education

AI Implications for Education

Design and Use of Al technologies to tackle educational challenges

4

2. Educating People about AI so that they can use it effectively and ethically

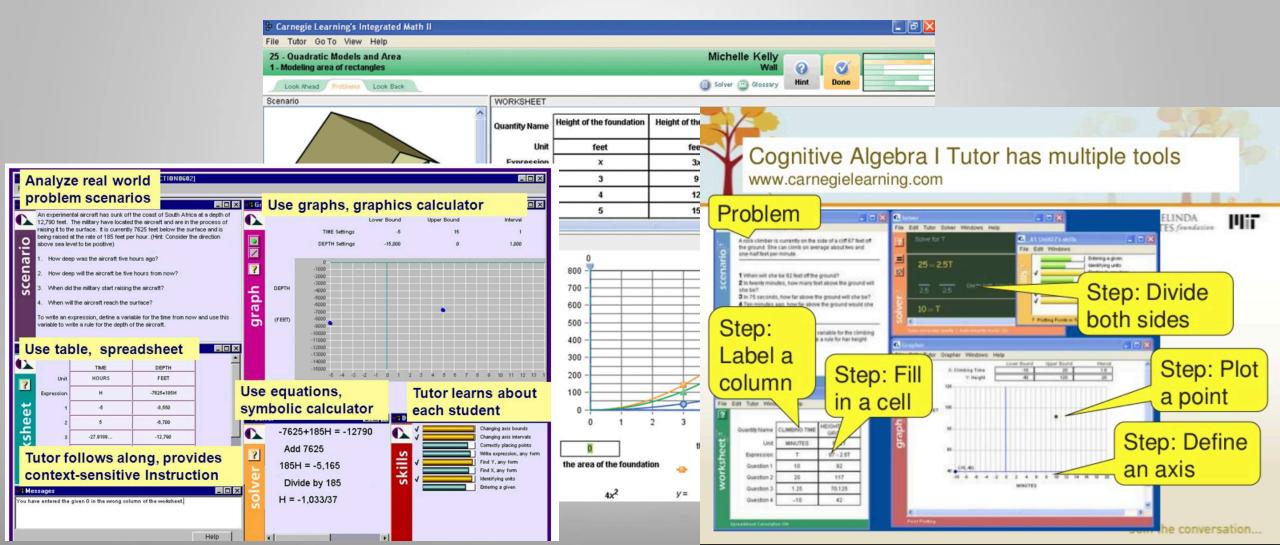
3. Innovation in Education to prepare people for an AIdriven world

Luckin, R., & Cukurova, M. (2019). Designing Educational Technologies in the Age of AI: A Learning Sciences Driven Approach. *British Journal of Educational Technology*, *50*(6), 490-504.

A "perfect intelligence" in Education is not the one that always gets the correct answers.

- Initial focus of AIED was on attempts to create systems that are as perceptive as human educators.
- It is possible to create AI in Education that "works".

6



Evidence of Impact

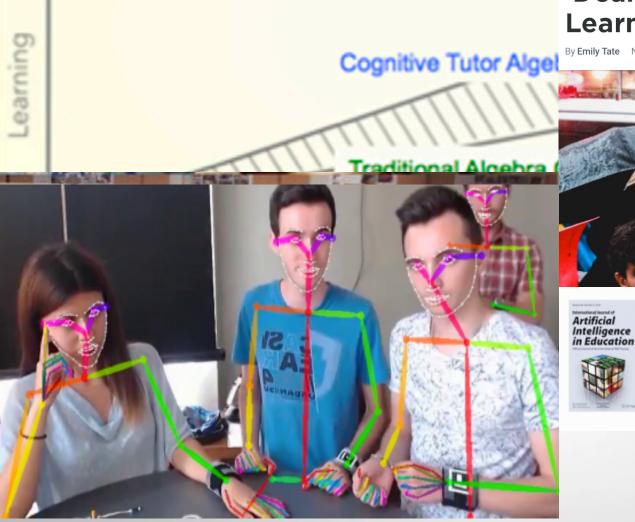
• ITSs can have positive impact on student learning : OLI learning course (Lovett et al., 2008), SQL-Tutor (Mitrovic, & Ohlsson 1999), ALEKS (Craig et al. 2013), Cognitive Tutor (Pane et al. 2014), ASSISTments (Koedinger et al. 2010).

Meta-reviews

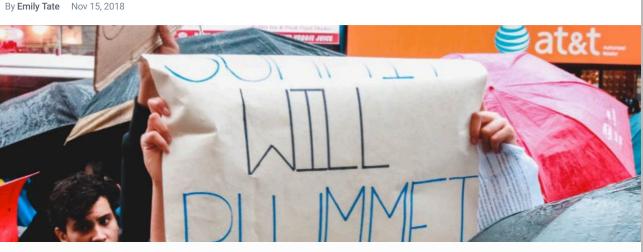
7

- VanLehn (2011) found that the effectiveness of the intelligent tutoring systems were nearly as effective as average human tutors.
- Ma et al. (2014) found similar results both when compared to a no tutoring or to large group human-tutor instruction.
- Steenbergen-Hu, & Cooper (2014) found more positive effects for ITSs as compared to conventional instruction.
- Similarly, Pane et al. (2014) found evidence of the relative effectiveness of online tutors over conventional teaching.

'Dear Mr. Zuckerberg': Students Take Summit Learning Protests Directly to Facebook Chief



8



International Journal of Artificial Intelligence in Education

Impact of an Artificial Intelligence Research Frame on the Perceived Credibility of Educational Research Evidence

1) Lovett, M., Meyer, O., & Thille, C. (2008). The open learning initiative: Measuring the effectiveness of the OLI statistics course in accelerating student learning. Journal of Interactive Media in Education. Retrieved from http://jime.open.ac.uk/2008/14

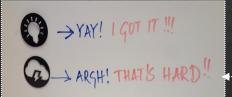
2) Cukurova, M., Luckin, R., & Kent, C. (2019). Impact of an Artificial Intelligence Research Frame on the Perceived Credibility of Educational Research Evidence. International Journal of Artificial Intelligence in Education, 1-31.

3) Cukurova, M. (2019). Learning Analytics as AI Extenders in Education: Multimodal Machine Learning versus Multimodal Learning Analytics. *Proceedings of the Artificial Intelligence and Adaptive Education Conference, xx1-xx3*.

What is an appropriate role for Al in education?

- Adopted systems at scale have high human agency.
- Non-autonomous human-Al hybrid systems may be the state for education rather than a transition state to fullautonomy.

Cukurova, M. (2019). Learning Analytics as AI Extenders in Education: Multimodal Machine Learning versus Multimodal Learning Analytics. *Proceedings of the Artificial Intelligence and Adaptive Education Conference, xx1-xx3.* Cukurova, M., Kent, C., & Luckin, R. (2019). Artificial intelligence and multimodal data in the service of human decision-making: A case study in debate tutoring. *British Journal of Educational Technology, 50*(6), 3032-3046.



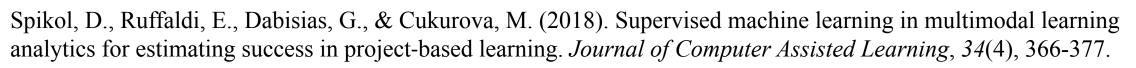
Machine Learning Classification of Collaboration Competence

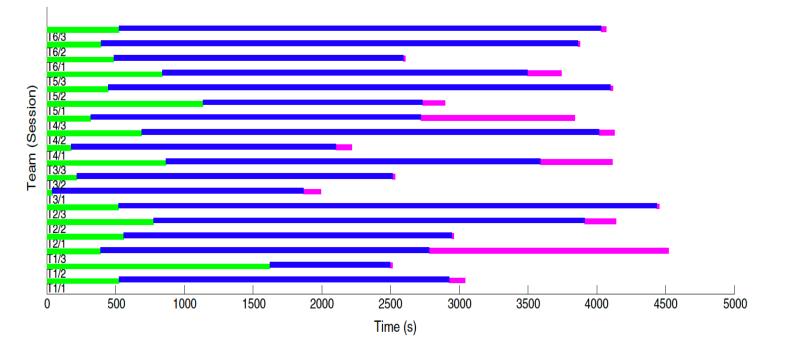
Independent Variables (MMLA Features)

FLS - Number of faces looking at screen DBL - Mean distance between learners DBH - Mean distance between hands HMS - Mean hand movement speed AUD - Mean audio level

IDEX - Arduino measure of complexity IDEVHW - Arduino active hardware blocks IDEVSW - Arduino active software blocks IDEC - Arduino active blocks

PWR - Student Work Phases





11

Machine Learning Classification of Collaboration Competence

_

Method	Deep learning	Traditional
Task	Regression	Classification
Input	18 variables	9 variables per window
Output	6 scores over 5 levels	1 score with 3 levels
Metrics	Regression score	Classifier accuracy
Windowing	120,240 and 360 s	10,20,30,90 min
Phase exclusion	Reflection	Reflection
Method	Multiple layers	NB, LR, SVML, and SVMR

Note. NB = naive Bayesian; LR = logistic regression; SVML = support vector machines with linear kernel; SVMR = support vector machines for regression.

Spikol, D., Ruffaldi, E., Dabisias, G., & Cukurova, M. (2018). Supervised machine learning in multimodal learning analytics for estimating success in project-based learning. *Journal of Computer Assisted Learning*, *34*(4), 366-377.



Note. NB = naive Bayesian; LR = logistic regression; SVML = support vector machines with linear kernel; SVMR = support vector machines for regression.

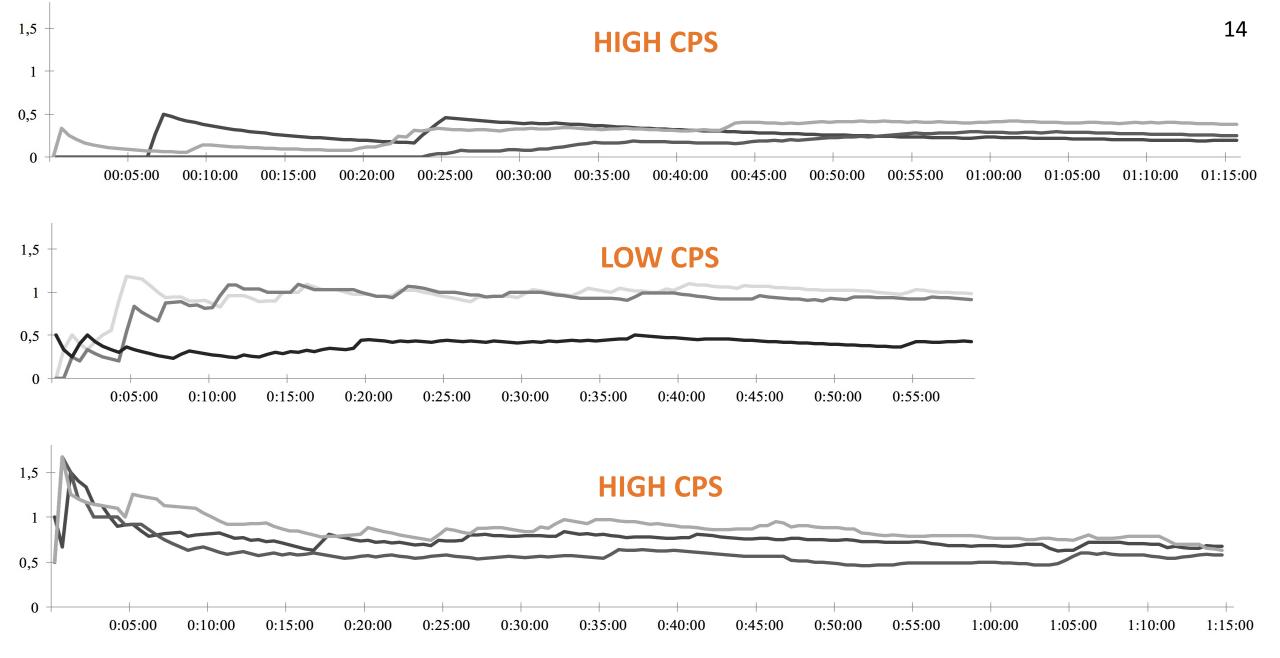
Removed feature	Best result
No features removed	0.129
All faces data	0.21
All Arduino data	0.21
DBF	0.15
DBH	0.21
HMS	0.19
AUD	0.18
Hand pos	0.21
Arduino comp	0.19

Deductive Approach: Nonverbal Indexes of Students' Physical Interactivity (NISPI Framework)

Some important components of collaboration may be interpreted through nonverbal indexes of students physical interactivity:

- synchrony,
- individual accountability,
- equality,
- mutuality.

Cukurova, M., Luckin, R., Millán, E., & Mavrikis, M. (2018). The NISPI framework: Analysing collaborative problem-solving from students' physical interactions. *Computers & Education*, *116*, 93-109. Cukurova, M. (2018). A syllogism for designing collaborative learning technologies in the age of AI and multimodal data. In *European Conference on Technology Enhanced Learning* (pp. 291-296). Springer, Cham.

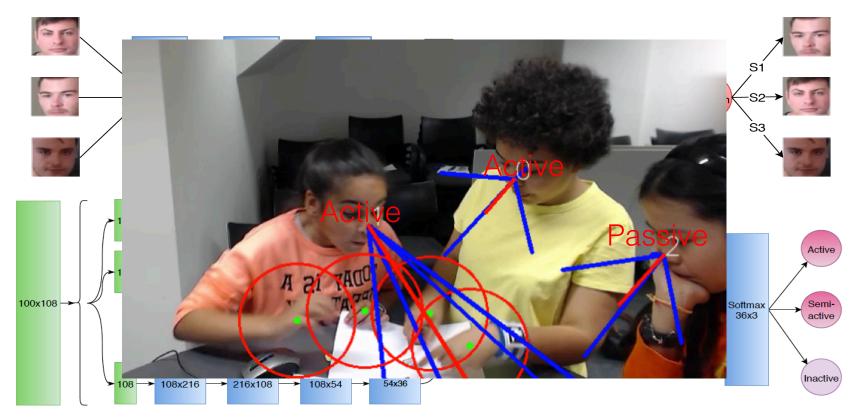


Cukurova, M., Luckin, R., Millán, E., & Mavrikis, M. (2018). The NISPI framework: Analysing collaborative problem-solving from students' physical interactions. *Computers & Education*, *116*, 93-109. —Student 1 —Student 2 —Student 3

Face patches (64x64)

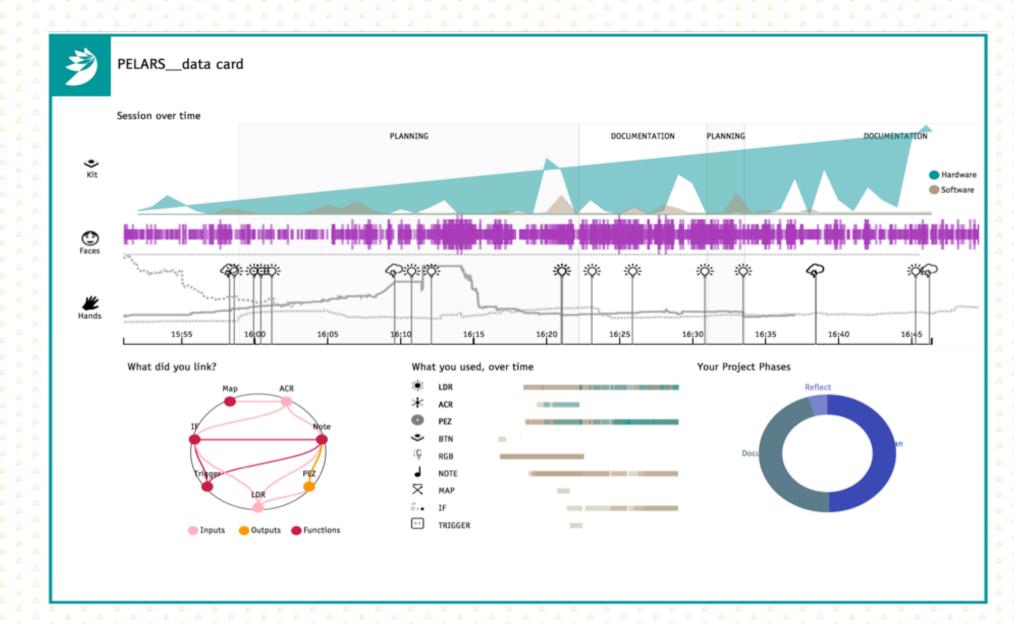
Deep CNN (FaceNET)

eNET)



Embeddings

1) Apply openPose to videos to get skeleton data 2) Used facial recognition from dlib and FaceNET to identify students 3) Utilised Hungarian algorithm for assigning faces to names 4) LSTM to detect Active, Semi-active, Inactive 5) Exploring Social LSTM to train classifier on 3 students jointly.

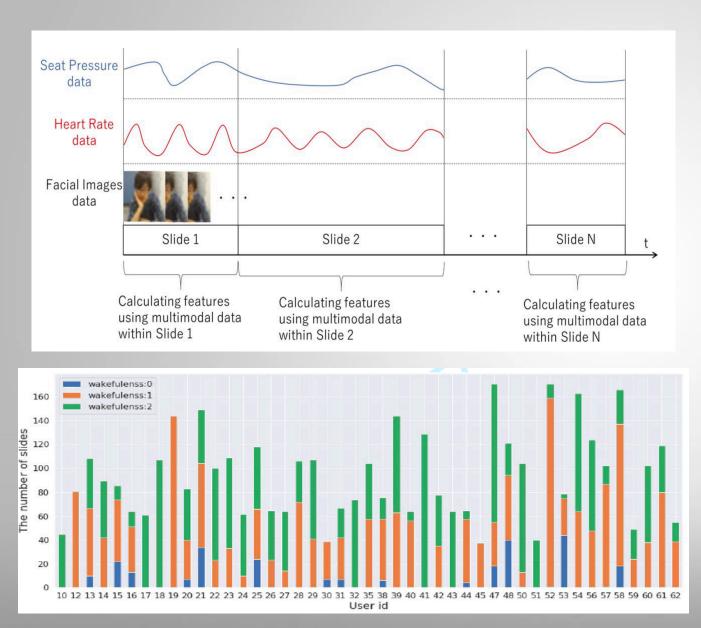


Cukurova, M., Mavrikis, M., & Luckin, R. (2017). Evidence-Centered Design and Its Application to Collaborative Problem Solving in Practice-based Learning Environments. *Analytics4Learning*. Stanford Research Institute, Menlo Park, USA.



Cukurova, M., Kent, C., & Luckin, R. (2019). Artificial Intelligence and Multimodal Data in the Service of Human Decision-making: A case Study in Debate Tutoring, *British Journal of Educational Technology, 50 (6)*, 3032-3046.

¹⁸ Detecting Asleep Learners at the Wheel of e-Learning Platforms



	Features Generated	Constructs Represented	
Heart rate	Mean/ standard deviation/ min/ max of RRI, HR, LF/HF, temperature	Heart rate in general represents the activity of the autonomic nervous system. RRI is an index of heart rate variability. HR is the Heart Rate. Low frequency (LF) power and High frequency (HF) power represent stress and rest states. Temperature is partially related to drowsiness.	
Seat pressure	Total/ mean pressure	Mean of each frame's total pressure and mean of pressure per second. They are used to estimate a learner's motions.	
	Total moving distance	Represents how large a learner's posture change is.	
	Total /mean/ max/ min time of MS (moving state) and SS (static state)	Represents how long a learner moves or stays still.	
	Ratio of MS (moving state)	Represents how often a learner changes posture.	
	Mean of absolute pressure difference between pressure current and previous frame.	Represents how large and how often a learner changes posture along vertical axis.	
Facial expression	Mean/ standard deviation of AU 2, 15, 26, 45 (occurrence and intensity)	AU2: Outer Brow Raiser, AU15: Lip Corner Depressor, AU26: Jaw drop, AU45: Blink.	
	Mean/ standard deviation/ min/ max of head rotation (yaw, pitch, roll)	Represents how large a learner's head rotation is.	
	Mean/ standard deviation/ min/ max of head transition along x, y, z	Represents how large a learner's head transition is.	

Confusion matrix of SVM and RF using personalised model							
		Predicted					
		SVM			RF		
		Asleep	Drowsy	Awake	Asleep	Drowsy	Awake
True label	Asleep	398	152	70	495	100	25
	Drowsy	205	964	311	187	1064	229
	Awake	27	207	726	12	165	783

Confusion matrix of SVM and RF using general model

the second state of CIVIA and DE second

	Conjusion matrix of SVM and RF using general model						
		Predicted					
		SVM			RF		
		Asleep	Drowsy	Awake	Asleep	Drowsy	Awake
True label	Asleep	35	131	44	81	82	45
	Drowsy	76	368	131	118	248	111
	Awake	41	141	240	25	136	155

1) Split data into train and test dataset: Cross validation of personalised model and general model.

2) Over/under sampling to deal with imbalanced label distribution of wakefulness states (SMOTE and random sampling)

3) Standardised train and test datasets: to have zero mean and unit variance.

4)SVM and RF are used to build model.

F1-macro scores of cross validation General model: SVM: 0.46; **RF: 0.47** Personalised model: SVM:0.76; **RF:0.77**

	0: Asleep	1: Drowsy	2: Awake
Facial images	AU02_c_mean AU02_r_std AU26_r_mean AU45_r_mean AU45_r_std pose_Rx_mean	(0>1>2)(0>1>2)(0<1<2)(0>1>2)(0>1>2)(0>1>2)(0>1>2)	
	AU45_c_mean (+) AU26_c_std (-) AU26_r_std (-) pose_Rx_min (+) pose_Rx_max (+) pose_Rx_std (+) pose_Ty_min (+) pose_Rz_std (+)	pose_Tx_max (+) pose_Tx_mean (+) pose_Tx_std (+) pose_Ty_max (+) pose_Ty_std (+) pose_Tz_max (+) pose_Tz_std (+)	AU02_c_std (+) AU15_r_std (-) AU26_c_mean (+) pose_Ty_mean (-) pose_Ry_mean (-)
Heart rate	HR_mean HR_min RRI_max RRI_mean RRI_std	(0 < 1 < 2) (0 < 1 < 2) (0 > 1 > 2) (0 > 1 > 2) (0 > 1 > 2) (0 > 1 > 2)	•
	HR_max (-) RRI_min (+) LF/HF_min (+) LF/HF_max (+) LF/HF_mean (+)		HR_std (-) LF/HF_std (-) temprature_min (-) temprature_max (-) temptature_mean (-)
Seat Pressure	I	ł	mean_prs (+)

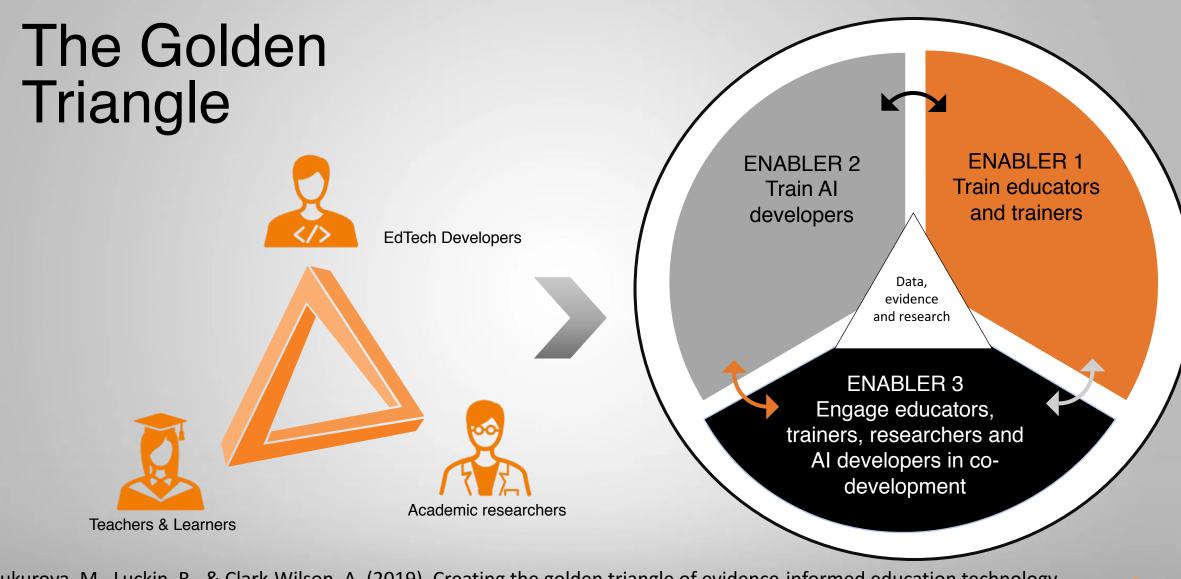
Results of ANOVA for three groups of behaviours to establish explainable characteristics of them

(+) Significantly higher than other groups

(-) Significantly lower than other groups

Confusion matrix of personalised and general model							
		Predicted					
		Personalised model			General model		
		Asleep	Drowsy	Awake	Asleep	Drowsy	Awake
True label	Asleep	484	104	32	99	63	46
	Drowsy	186	1075	219	115	237	125
	Awake	15	177	768	25	94	197

F1-macro score of cross validation Final General Model; **RF: 0.52** Final Personalised Model; **RF:0.77**



Cukurova, M., Luckin, R., & Clark-Wilson, A. (2019). Creating the golden triangle of evidence-informed education technology with EDUCATE. *British Journal of Educational Technology*, *50*(2), 490-504. https://www.ucleducate.com

To Sum-up

- Al is likely to significantly impact education and there is a need for a system change: design and use Al, educate people about Al, innovate education systems for an Al-driven world.
- With current definitions of AI, I am not convinced that the more intelligent is better for teaching and learning. Tightly coupled human-AI systems, that are not like human but human-centred, can be more appropriate for teaching and learning.
- Better inter-stakeholder collaborations are needed to make progress in AI in Education.

Thank you

Dr Mutlu Cukurova <u>m.cukurova@ucl.ac.uk</u> @mutlucukurova

