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Demand forecasting for transportation and mobility: 

When, where, how much? 
Human behaviour drives demand

Demand for park-and-ride 
facilities

Domestic, import and 
export container traffic

Passenger demand for air 
travel



Demand predictions are rarely useful on their own — 
Used to make decisions 

Supply optimization and demand management

Decide location and capacity of facilities 
to maximize captured demand

Plan transport services and their 
capacity to satisfy delivery 

requirements at minimum cost

Price tickets to maximize 
revenue

Demand for park-and-ride 
facilities

Domestic, import and 
export container traffic

Passenger demand for air 
travel



Predict Optimize

̂y = f(x; θ) z*( ̂y) = arg min g(z, ̂y)
z ∈ Z( ̂y)

Decide Interact

Data
(xi, yi) i = 1,2,…, N

Solution Execution

In general, decision-making problems in mobility and transportation are  

recurrent, involve a human in the loop, occur in complex uncertain environments

Demand 
response

z′�

y′�



MACHINE LEARNING FOR DECISION-MAKING IN 
TRANSPORTATION AND MOBILITY 
 — Supply optimization and demand management

Solving methods

Models

Speed-up solving methods of 
deterministic or stochastic discrete 
(or combinatorial) optimization 
problems through learning 
- ML augmented CO 
- Predicting CO solutions

Surveys: Bengio et al., 2021, Kotary et al., 2021

Integrate prediction and 
optimization models



Integrate prediction and optimization to improve 
decisions and anticipate demand response

Decision awareness in learning can be of high value

Measuring actual impact may not be as easy as it sounds

1
OUTLINE

2
3



1 Predict Optimize

Most optimization models for transport and mobility 
assume that demand is fixed and known. 

Reality:  
‣ Decisions impact demand. Need for anticipation. 
‣ User preferences are heterogeneous and we have 

imperfect knowledge thereof.



Predict Optimize

̂y = f(x; θ) z*( ̂y) = arg min g(z, ̂y)
z ∈ Z( ̂y)

 
Features used for prediction include 
exogenous variables  and decision 
variables 

x = (x′�, z)

x′�

z

OPTIMIZATION WITH 
ENDOGENOUS DEMAND 
(UNCERTAINTY)

‣ Stochastic programming: decisions 
impact the probability distributions 
of uncertain model parameters 
(e.g., Bhuiyan et al. 2020) 

‣ Robust optimization: decision-
dependent uncertainty sets 

‣ Optimization with random utility 
maximizing users/customers



Predict 
Users optimize 

Maximize random 
utility

Optimize 
Decisions

̂y ∈ arg max 𝔼ε[u(y, x′�, z, ε)]

z*( ̂y) = arg min g(z, ̂y)
z ∈ Z( ̂y)

OPTIMIZATION WITH 
RANDOM UTILITY 
MAXIMIZING (RUM) 
USERS
‣ Bilevel programming: important in 

different domains, e.g., pricing 
problems in transportation 

‣ NP-hard even when leader and 
follower problems are linear 
programs 

‣ Most work assume deterministic 
follower model. Few exceptions, e.g., 

‣ Network pricing (Gilbert et al., 
2014, 2015), competitive facility 
location (Dan and Marcotte, 2019)

Bilevel programming formulation 
Leader makes a decision  anticipating followers’ 
reactions 
Followers react to  choosing an option that 
maximizes their utility  (modelled as a random 
variable) 
The two objectives are conflicting

z

z
u



COMPETITIVE FACILITY LOCATION

Robin Legault and Emma Frejinger, A Simulation Approach for 
Competitive Facility Location with Random Utility Maximizing Customers, 
arXiv:2203.11329, 2022. 

A simulation approach to deal with any type of random 
utility maximization (RUM) discrete choice model

Source: Wikipedia 



COMPETITIVE FACILITY 
LOCATION
‣ Locate facilities in a competitive market 

to maximize captured customer demand 

‣ Generative perspective: simulate 
customers’ utilities instead of using 
probabilities (Paneque et al., 2021) 

‣ Sample average approximation: flexible, 
but requires a lot of scenarios 

‣ Clustering heuristic: aggregate 
customers according to preference 
profile — reduces the number of 
scenarios without affecting the optimal 
solution

max
z∈Z

𝔼θ [ℙε [arg max
c∈C(z)

{uc(θ, ε)} ∈ D(z)]]

Any model requires simulation to evaluate  if the support 
of  is infinite 
We compare the performance of our simulation approach to 
MOA (Mai and Lodi, 2020)

𝔼θ
θ

max
z∈Z

1
|N | ∑

n∈N

ℙε [arg max
c∈C(z)

{uc(ψn, ε)} ∈ D(z)]
max
z∈Z

1
|N | |S | ∑

n∈N
∑
s∈S

1 [arg max
c∈C(z)

{uc(ψn, ξns)} ∈ D(z)]

{ψn}n∈N {ξns}n∈N,s∈S

Trade-off: number of simulated customers and number 
of scenarios for each customer approximating their 
behaviour

|N |
|S |

(1)

(2)



RESULTS
‣ Interpretability: Information-theoretic 

characterization of instances - entropy 
‣ Outperforms state of the art when 

observable attributes are strong 
predictors of customers’ behaviour 
(relatively low entropy) 

‣ Large number of simulated customers 
is required to close the relative 
generalization gap — favours the 
simulation approach 

‣ Large  seems more important 
than large 

|N |
|S |

Higher 
Entropy

More scenarios required to obtain high-
quality solutions 
Leads to harder instances

Simulation approach offers 
computational advantage over state of 
the art for MNL for most instances 
Large-scale problems (New York City) 
Can effectively solve for mixed MNL

Mixed MNL when  has infinite support: 
- For the same number of simulated 
customers: solving (1) provides better 
solutions than solving (2), but at a large 
computational cost 
- If entropy is not too high, (2) can be 
solved with  and  
in seconds

θ

|N | > 100,000 |S | = 1



2 Predict Optimize

Standard practice: Predict, then optimize 

Decision awareness can be of high value



Predict Optimize

̂y = f(x; θ) z*( ̂y) = arg min g(z, ̂y)
z ∈ Z( ̂y)

PREDICT, THEN OPTIMIZE

‣ Training according to a prediction 
criterion 

‣ Minimize a loss function   

‣ E.g., distance between predicted 
and observed ground truth values 

L(y, ̂y)

L(y, ̂y) = (y − f(x, θ))2

1
N

N

∑
i=1

L(yi, f(xi, ̂θ))Train error =

Predictions



Predict: demand for 
OD 1 and 2

Optimize: decide capacity 
minimizing cost

Capacity: 20 Fixed cost: 100

Illustrative example:  
Equal prediction errors but different decision costs

OD 1

OD 2

or

Prediction 
 ̂yi

21OD 1

OD 2

Ground truth 
 yi

19

119



Predict Optimize

̂y = f(x; θ) z*( ̂y) = arg min g(z, ̂y)
z ∈ Z( ̂y)

END-TO-END 
LEARNING / DECISION 
AWARENESS
‣ Training using regret minimization 

‣ Challenge: differentiate through 
argmin operator 

‣ Transport and mobility:  is 
typically a solution to a discrete 
optimization problem with 
predictions occurring in contraints 
and objective 

‣ E.g., Mixed Integer Linear 
Programs

z*( ̂y)

Lr(y, ̂y) = g(z*( ̂y), ̂y) − g(z*(y), y)

Difference in objective function value 
from using  as opposed to ̂y y



END-TO-END LEARNING
Gap in the literature:  

How to deal with large MILPs predictions in 
objective and constraints? 

‣ Discrete (deterministic) optimization with unknown 
parameters in objective  function only (Elmachtoub and 
Grigas, 2021, Ferber et al., 2020, Mandi et al., 2020, 
Pogančić et al., 2020) 

‣ Rely on linear programming results. E.g., Ferber et al. 
(2020) use cutting planes, Mandi et al. (2020) focus on 
MILPs having strong continuous relaxations 

‣ Survey: linear programs and beyond (Kotary et al., 2021)



END-TO-END LEARNING 
RELATED TOPICS
‣ Model-based reinforcement learning: decision-aware model 

learning (e.g., Grimm et al., 2020) for sequential decision 
making problems formulated as Markov Decision Processes 

‣ In case of observations both  and solutions  (optimal or 
suboptimal) 
‣ Data-driven inverse optimization with noisy data: very few 

results on discrete optimization with noisy data 
(Moghaddass and Terekhov, 2021) 

‣ Inverse reinforcement learning (Ng and Russell, 2000), 
dynamic discrete choice modeling (Aguirregabiria and 
Mira, 2010), system identification for control (Gevers, 
2005)

y z



WHAT TO DO IN PRACTICE?
Large-scale mixed integer linear program with 
predictions in constraints and objective function

Tactical planning and the periodic demand 
estimation problem for freight transportation

Laage, Frejinger and Savard, A Two-step Heuristic for the Periodic 
Demand Estimation Problem, arXiv:2108.08331, 2021. 

Laage, Frejinger and Savard, Periodic Freight Demand Estimation 
for Large-scale Tactical Planning, arXiv:2105.09136v2, 2021. 

Collaboration with the Canadian National Railway Company (CN) 



Tactical plan 
Cyclic 

Repeats in each 
period (week)

Origin: Montreal 
Mon, Wed, Fri, 9AM  
       Toronto, Cap:300 
       Vancouver, Cap:500 
Tue, Thu, Sat, 5PM 
       Quebec, Cap:100 
       Halifax, Cap:400

Operational plan 
Adjusted tactical plan

Origin: Montreal 
Mon, Wed, Fri, 9AM  
       Toronto, Cap:350 
       Vancouver, Cap:450 
Tue, Thu, Sat, 5PM 
       Quebec, Cap:200 
       Halifax, Cap:300 
       Extra service, Cap:200

PERIODIC DEMAND 
ESTIMATION
‣ A cyclic tactical plan (service 

network design) is in place over a 
given time horizon (e.g., a season) 

‣ Satisfy demand at minimum cost 

‣ Input: periodic demand 

‣ Demand expected to repeat in 
each period (e.g., week)



ILLUSTRATIVE 
EXAMPLE

‣ How to map demand forecasts per period to periodic demand? I.e., 
what is a good periodic demand scenario? 
‣ The mean is typically used in practice 
‣ Use a distribution instead of a single value per commodity and 

period: discrete optimization problem under uncertainty (e.g., 
Crainic et al., 2020) - computationally costly to apply to real large-
scale problems

x-axis: time periods (week) 
over time horizon T 

y-axis: demand  for 
commodity  

Each line: a mapping from per 
period forecasts to periodic 
demand

yk0

k0



Data of transported demand is at the operational level  
May be constrained by the supply — censored (left or right) or truncated data

MCND: Multicommodity Capacitated Fixed-charge Network 
Design

wMCND: MCND with fixed design variables



THE PERIODIC 
DEMAND ESTIMATION 
PROBLEM
‣ Based on per period demand 

forecasts, estimate periodic 
demand as a deviation from 
average forecasts 

‣ Intuitive interpretation 

‣ Solve problem using clustering 
techniques and a heuristic 
combined with a general 
purpose MIP solver



A HIGH-VALUE 
PROBLEM
‣ High value using information 

from downstream decision-
making problem when 
identifying the demand 
scenario 

‣ Large cost reductions — more 
than 15% — compared to using 
average forecasts 

‣ For commodities where the 
problem is sensitive to large 
demand values: αk > 1

Case study from the 
Canadian National Railways 
170 commodities 
10 weeks planning horizon

Average

Each colour: cluster of commodities having 
the same value of  
One bar per commodity

αk



3 Measuring the impact 

A case of counterfactual prediction

Predict Optimize Decide Interact

Companies involved: IVADO Labs and Air Canada 

Laage, Frejinger, Lodi, Rabusseau, Assessing the impact: Does an Improvement to 
a Revenue Management System Lead to an Improved Revenu?, arXiv:2101.10249 

Greta Laage, 2nd place for the Anna Valicek Award from the Airline Group of the 
International Federation of Operational Research Societies



Predict Optimize

̂y = f(x; θ) z*( ̂y) = arg min g(z, ̂y)
z ∈ Z( ̂y)

Decide Interact

Data
(xi, yi) i = 1,2,…, N

Solution Execution

Demand 
response

z′�

y′�

Value/cost of the solution assuming that 
the models are correct.

Actual value/cost in the real 
environment.

How can we assess the actual impact of a new (or modified) decision-support system? 

Proof of concept: test system on a limited scale (e.g., subset of origin-destination pairs) 
and compare performance to what would have been the performance business as usual



Source: IVADO Labs, Air Canada

Predict 
Bookings to come

Optimize 
Price, seat 

allocation, etc.

Demand analyst

Bookings, 
revenue

+AI forecaster

Solution 
Automated process



Source: IVADO Labs, Air Canada

Demand analyst

User interface: display discrepancies between base forecasts 
and AI forecaster 
Decide influences for the system (impact on optimization)



1

2

3

Observed: actual revenue of treated OD

Unobserved: untreated revenue for treated OD, Yt

Observed: 3,000 control ODs, Xt

Objective: Estimate total impact (all treated ODs over the 
whole treatment / test period  

Counterfactual prediction: Yt = F(Xt)

ASSESSING THE IMPACT

‣ Examples of existing approaches 
‣ Simulation (Weatherford and 

Belobaba, 2002, Fiig et al., 2019): 
does not assess actual impact 

‣ Year over year change: easy to 
compute but unreliable 

‣ A-B testing: can be noisy and 
adequate control ODs may not 
exist 

‣ Counterfactual prediction: adaptable 
to various treatment lengths, could 
measure relatively small impacts

Source: IVADO Labs, Air Canada



‣ Synthetic control 
‣ Differences-in-differences (Ashenfelder and Card, 1985) 
‣ Abadie-Diamond-Hainmueller Synthetic Control Method (Abadie 

and Gardezabal, 2003, Abadie et al., 2010) 
‣ Constrained regression (Doudchenko and Imbens, 2016) 

‣ Robust synthetic control (Amjad et al., 2018) 
‣ Matrix completion with nuclear norm (Athey et al., 2018) 
‣ Feed-forward neural network (can deal with multiple treated units)

Our setting: Multiple treated units, a 
large set of controls, relatively small 
impact 

Literature: mostly focused on macro 
enomoic settings. E.g., impact of the 
German reunification

COUNTERFACTUAL PREDICTION MODELS



‣ 30 treated ODs (15 non directional) 
‣ 317 control ODs carefully selected 

(unaffected by treatment) 
‣ Observations January 2013 - February 

2020 
‣ 15 pseudo-treatment periods of 6 

months 
‣ Several counterfactual prediction models 

have similar performance 
‣ Best performing models predict total 

revenue with total percentage error of 
less than 1% 

‣ Accurate estimation of (simulated) 
impact

ACCURATE RESULTS

Post-treatment periods

Percentage error per period

Simulated impact (random variable with known mean  and variance)μϵ



CONCLUSION

JOINT WORK WITH:
Greta Laage 
Robin Legault 
Andrea Lodi 
Mike Hewitt 
Guillaume Rabusseau 
Gilles Savard

‣ Predictions often used to make decisions 
‣ Integrating prediction and (discrete) optimization 

can be of high value to transport and mobility 
application 

‣ Important problems arise in this context 
‣ Challenging discrete optimization problems with 

endogenous demand uncertainty 
‣ Decision awareness in learning 
‣ Measuring actual impact and reducing post-

decision disappointment 
‣ Research: several open research questions 
‣ Practice: innovative pragmatic solutions related to 

decision awareness



Thank you! 
emma.frejinger@umontreal.ca 

emmafrejinger.org
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