

Learning individual behaviors from vehicle trajectory data

Dr. Kenan Zhang

29.03.2022

AMLD AI & Mobility

Background

Vehicle trajectory as a probe of urban dynamics

• Mobility profiling¹

1 Liu et al. Understanding intra-urban trip patterns from taxi trajectory data. J. Geogr. Syst., 2012

- Community & hotspot detection^{2,3}
 - 2 Liu et al. Revealing travel patterns and city structure with taxi trip data. J. Transp. Geogr., 2015 3 Chang, Tai and Hsu. Context-aware taxi demand hotspots prediction. Int. J. Bus. Intell. Data Min., 2010
- Traffic prediction⁴
 - 4 Zhang et al. Deep spatiotemporal residual networks for city wide crowd flows prediction. AAAI, 2017
- Location/Route recommendation^{5,6}
 - 5 Lee, Shin and Park. Analysis of the passenger pick-up pattern for taxi location recommendation. IEEE NCM, 2008 6 Yu et al. A Markov decision process approach to vacant taxi routing with e-hailing. TR-B, 2019
- ⇒ Analysis at the aggregate level rather individual level

Community detection results (Liu et al., 2012)

Personalized hotspot score (Chang, Tai and Hsu., 2010)

Outline

Data & preprocessing

- Learn behavioral patterns from trajectories
 - Taxi search strategy recognition
- Learn latent state from trajectories
 - Taxi occupancy status correction

Discussions

Data

Taxi GPS trajectories

- All registered taxis in Shenzhen, China (~20K by 2020)
- Average record intervel is 20 sec (~20B rows per week)

Taxi ID	Timestamp	Coordi	Instantaneous speed and orientation			Occupancy	
		Coordinates				Cocapancy	
taxiid character varying (12)	time timestamp without time zone	lon double precision	double precision	velocity integer	angle integer	passenger smallint	
UUUB0C0M7	2020-01-01 00:19:43	114.125206	22.567154	0	171	0	
UUUB0C0M7	2020-01-01 00:19:43	114.125206	22.567154	0	171	0	
UUUB0C0M7	2020-01-01 00:19:58	114.125206	22.567154	0	171	0	
UUUB0C0M7	2020-01-01 00:20:13	114.125206	22.567154	0	171	0	vacant
UUUB0C0M7	2020-01-01 00:20:28	114.125206	22.567154	0	171	0	
UUUB0C0M7	2020-01-01 00:20:28	114.125206	22.567154	0	171	0	
UUUB0C0M7	2020-01-01 00:20:30	114.125206	22.567154	0	171	0	pickup
UUUB0C0M7	2020-01-01 00:22:55	114.124718	22.562443	19	89	1	ριτκαρ
UUUB0C0M7	2020-01-01 00:24:23	114.125198	22.559134	22	60	1	occupied
UUUB0C0M7	2020-01-01 00:24:26	114.125412	22.559196	35	31	1	

Preprocessing

Geographic information augmentation

- Mapping to Transportation Analysis Zone (TAZ)
- Mapping to road segment¹

Trip segmentation

Based on the change in occupancy status²

Hotspot extraction

- TAZ clustering by iDBSCAN³
 - Distance: centroid distance
 - Weight: pickup and dropoff number

1 Wu et al. Map matching based on multi-layer road index. TR-C, 2020

2 Nie. How can the taxi industry survive the tide of ridesourcing? Evidence from Shenzhen, China. TR-C, 2017 3 Pan et al. Land-use classification using taxi GPS traces. IEEE ITS, 2013

ETH zürich

Distribution of pickups and dropoffs

Hotspot areas

Outline

Data & preprocessing

- Learning patterns from trajectories
 - Taxi search strategy recognition
- Learning latent state from trajectories
 - Taxi occupancy status correction
- Discussions

Motivation

Identify different search strategies among idividual taxi drivers

- Previous work
 - Preclassified driver groups^{1,2}
 - Predefined search strategies²

1 Liu, Andris and Ratti. Uncovering cabdrivers' behavior patterns from their digital traces. Comput. Environ. Urban Syst., 2010

2 Zhang et al. Understanding taxi service strategies from taxi GPS traces. IEEE ITS, 2015

- Related work
 - Model drivers as rational agents with full information³
 - Design optimal search path based on historical data⁴

3 Wong et al. Modeling the bilateral micro-searching behavior for urban taxi services using the absorbing Markov chain approach. J. Adv. Transp., 2005

4 Yu et al. A Markov decision process approach to vacant taxi routing with e-hailing. TR-B, 2019

⇒ Directly learn taxi search strategies from data

Distribution of driver income (Li et al., 2011)

Predefined service strategies (Zhang et al., 2015)

Hunting image

- An image-based representation of individual behaviors
 - Pixel ⇒ Spatiotemporal index
 - Channel ⇒ Features

Search trips of each taxi

$$\mathcal{H}^j = \left\{ \tau_k^j \right\}_{k=1}^{K^j}$$

Features for each spatiotemporal index

$$x_{i_t, i_d}^j = \left\{ v_l^j \right\}_{l=1}^{N_v}$$

Hunting image of each taxi

Collection of hunting images

Feautre engineering

Cruising characteristics

- Cruising speed $v_c = d_s/t_s$, where d_s , t_s are search distance and time, respectively
- Cruising ratio $r_c = \begin{cases} 1, & d_s = 0 \\ d_s/l_s, & d_s > 0 \end{cases}$ where l_s is line distance between search origin and destination

$$v_c=12.65$$
 mph, $r_c=2.64$

Feautre engineering

- Search driven by pickup probability
 - Normalized demand and supply by location and time $D^{a,t} = \frac{Q^{a,t}}{\sum_j Q^{j,t}}$, $S^{a,t} = \frac{T^{a,t}}{\sum_j T^{j,t}}$
 - Demand-supply ratio $R^{a,t} = D^{a,t}/S^{a,t}$
 - Difference in demand-supply ratio: $\Delta R = \log(R^{d,t}) \log(R^{o,t})$

Normalized demand and supply on daily average

Feautre engineering

- Search driven by expected revenue
 - Distance of next passenger trip d_p

Strategy recognition

- Sparse space clustering (SSC)¹
 - Problem: Identify low-dimensional structure embedded in a high-dimensional feature space
 - Idea: Represent each taxi driver as linear sparse combination of others

⇒ similar drivers have non-zero weights in the representation matrix

- Sparse representation problem
 - Feature matrix $Y \in \mathbb{R}^{N \times M}$
 - Representation matrix $C \in \mathbb{R}^{M \times M}$

Original formulation

$$\min_{C} ||C||_{0}$$
s.t. $Y = YC$,
$$diag(C) = 0$$

Relaxed to l_1 -norm

$$\min_{C} ||C||_{1}$$
s.t. $Y = YC$,
$$diag(C) = 0$$

Consider outlying entries

$$\min_{C,Z} ||C||_1 + \gamma ||Z||_1$$
s. t. $Y = YC + Z$,
$$diag(C) = 0$$

1 Elhamifar and Vidal. Sparse subspace clustering. CVPR, 2009

Strategy recognition

- Sparse space clustering (SSC)
 - Solve the representation matrix with ADMM¹
 - A more compact form

$$\min_{X} \left| |X| \right|_{1}$$

$$s.t. \ Y = PX, \ X_{ii} = 0, i = 1, ..., M$$

$$\min_{X,B} \left| |B| \right|_{1}$$

$$s.t. \ Y = PX,$$

$$X = B$$

$$X_{ii} = 0, i = 1, ..., M$$
where $X = [C, \gamma Z]^{T}, P = [Y, I/\gamma]$

Augmented Lagrangian

$$\mathcal{L}_{\rho_{1},\rho_{2}}(X,B,\lambda_{1},\lambda_{2}) = \left| |B| \right|_{1} + \frac{\rho_{1}}{2} \left| |Y - PX| \right|_{2}^{2} + \frac{\rho_{2}}{2} \left| |X - B| \right|_{2}^{2} + \text{tr} \left(\lambda_{1}^{T} (Y - PX) \right) + \text{tr} \left(\lambda_{2}^{T} (X - B) \right)$$

Iterative rules

$$\begin{split} X^{k+1} &= (\rho_1 P^T P + \rho_2 I)^{-1} (\rho_1 P^T Y + \rho_2 B^k + P^T \lambda_1^k - \lambda_2^k) \\ B^{k+1} &= S_{1/\rho_2} \left(X^{k+1} + \lambda_2^k / \rho_2 \right) \text{ soft-thresholding with parameter } 1/\rho_2 \\ \lambda_1^{k+1} &= \lambda_1^k + \rho_1 (Y - P X^{k+1}) \\ \lambda_2^{k+1} &= \lambda_2^k + \rho_2 (X^{k+1} - B^{k+1}) \end{split}$$

1 Boyd et al. Distributed optimization and statistical learning via the alternative direction methods of multipliers, 2011

Strategy recognition

- Sparse space clustering (SSC)
 - Spectral clustering on the representation matrix
 - Construct similarity matrix
 - Normalize C^* by column $c_i^* = c_i^*/|c_i^*|_{\infty}$
 - Ensure symmetry $\bar{C} = |C^*| + |C^*|^T$
 - K-means clustering on the normalized graph Laplacian

$$L = I - D^{-1/2}\bar{C}D^{-1/2},$$

where
$$D = diag\{\sum_{j} \bar{C}_{ij}\}$$

ullet Cluster number determined based on the number of zero-eigenvalaues of L

Setting

- Weekday trips during five weeks in 2016, each from a different month
- 885 taxis are selected, which
 - continuously operate in the analysis period
 - have at least 450 valid search trips (~18 trips per day)
- Image construction
 - Time horizon: discretized by half-hour intervals
 - Space horizon: discretized by search distance percentile with 2% increment
 - Pixel value: average feature value of trips in corresponding space-time slot

- Image smoothing
 - Gaussian filtering + max-pooling

Clustering results

1.46

1.44

iter = 500

iter = 1000

iter = 2000

iter = 2000

1.42

iter = 300

iter = 1000

iter = 1000

iter = 1000

9 11 13 15 17 19 21 23 25

Order

Eigenvalues of L

- Results of selected taxi clusters
 - Common patterns
 - Feature distribution
 - Special time windows
 - Difference in strategies
 - Direct search vs local cruising
 - e.g., Cluster 2 and Cluster 4
 - Long-distance vs short-distance
 - e.g., Cluster 0 and Cluster 2
 - Search at night
 - e.g., Cluster 0 and Cluster 5

Takeaways

- Image-based represention of individual behaviors
 - Enable analysis of behavioral patterns using image processing and learning methods

- First expand the feature space then do subspace clustering
 - Make full use of the information
 - Avoid the curse of dimensionality

Outline

Data & preprocessing

- Learning patterns from trajectories
 - Taxi search strategy recognition
- Learning latent state from trajectories
 - Taxi occupancy status correction
- Discussions

Motivation

Mislabeled occupancy status

- Lead to incorrect trip segmentation
- Unable to fix through simple filtering

Learning with label noise

- Data cleansing: detect anomaly/outliers (e.g., SVM¹)
- Noise-robust model: use model robust to noise (e.g., risk minimization²)
- Noise-tolerant model: incorporate label noise in learning (e.g., Bayesian³)

³ Swartz et al. Bayesian identifiability and misclassification in multinomial data. Can. J. Statist., 2004

¹ Thongkam et al. Support vector machine for outlier detection in breast cancer survivability prediction. Asia-Pacific Web Conf., 2008

² Manwani and Sastry. Noise tolerance under risk minimization. IEEE Cyber, 2013

Problem statement

Definitions

- Trajectory sequence $s \coloneqq \{e_t\}_{t=1}^T$
 - a series of GPS records such that the time between any two consecutive points is less than a threshold
- Occupancy transition $\tilde{y}_t = (o_{t-1}, o_t)$
 - transition in occupancy status between two consecutive points
- State $z_t \in \{\text{vacant}, \text{pickup}, \text{occupied}, \text{dropoff}\}$
 - each produce different occupancy transitions
- Input features u_t
 - independent on but affect state z_t (e.g., time of day, location)
- Output features x_t
 - dependent on state z_t (e.g., vehicle movement)

Main objective

• Predict state sequence $\{z_t\}_{t=1}^T$ based on the input and output features, along with observed occupancy transitions, i.e., $\{u_t, x_t, \tilde{y}_t\}_{t=1}^T$

IO-HMM formulation

- Input-output hidden Markov model
 - Causal graph

IO-HMM formulation

- Input-output hidden Markov model
 - Parameterization $\Theta(q, A, b, e)$

• Initial state distribution
$$q_i = P(Z_1 = i)$$

- State transition $a_{i,j,u} = P(Z_t = j | Z_{t-1} = i, U_t = u)$
- Emission probability $b_{i,l,x} = P(X_{t,l} = x | Z_t = i)$

$$e_{i,y} = P(\tilde{Y}_t = y | Z_t = i)$$

- E step: compute posterior via forward-backward algorithm
- M step: update parameters via MLE

Feature engineering

Input features

- "night" (binary)
- "hotspot" (binary)
- "highway" (binary)
- "no-trans" (binary): transition is not likely to happen due to infeasible acceleration

Output features

- "unf-acc-dec" (categorical): moving at a uniform/increasing/decreasing speed
- "straight-return-largeturn" (categorical): moving straight/regular turn/sharp turn
- "move-shortstop-longstop" (categorical): moving/short-time stop/long-time stop
- "obstrans" (categorical): observed occupancy transition

Trajectory preprocessing

- Speed and orientation filtering using both instantaneous values and consecutive coordinates
- Segment data into trajectory sequences with time gap threshold 300 sec

Training

- 2,000 sequences (~800K GPS points) divided into 10 batches, 20 taxis per batch and 10 sequences per taxi
- One model is trained for each batch with 100 times random initialization

Testing

- 115 sequences (~40K GPS points) with manually corrected labels
- Small sample of trajectories with a large amount of errors

Prediction accuracy and robustness

- Transform predicted states back to occupancy status
 - assume flip in occupancy happens at the end of pickup/dropoff interval
- Evaluate predictions on occupancy flips rather occupancy status
 - true-positive (TP): an occupancy flip is observed in a predicted pickup/dropoff interval
 - false-positive (FP): within a predicted pickup/dropoff interval, no occupancy flip is observed
- Robustness analysis
 - manually added noise with Poisson occurrence (with prmt. λ) and Exponential duration (with prmt. β)

	λ	β	Recall		Precision		F1 score	
Baseline*	-	-	0.9699		0.9699		0.9699	
Rand.	0.05	5	0.8955	-0.0744	0.5679	-0.4020	0.6950	-0.2749
Rand.	0.05	10	0.9130	-0.0569	0.7022	-0.2677	0.7938	-0.1761
"highway" = T	0.1	5	0.9686	-0.0013	0.9507	-0.0192	0.9596	-0.0103

- Performance of label correction
 - Works well with simple and long trips with several mislabeled segments

- Performance of label correction
 - Fail to handle trips with complex behaviors and fix errors in highly corrupted data

Takeaways

- Sequential representation of individual behaviors
 - With latent states and observable contexts ("input") and behaviors ("output")
- Deal with noisy and missing label
 - Model it as a feature and learn the true label based on it

Outline

Data & preprocessing

- Learning patterns from trajectories
 - Taxi search strategy recognition
- Learning latent state from trajectories
 - Taxi occupancy status correction
- Discussions

Discussions

- Issue of data sparsity
 - 10M GPS points \Rightarrow 450K trips \Rightarrow 500 trips per taxi \Rightarrow 0.2 trip per space-time slot
- Representation of behaviors
 - Spatial and temporal interdependence
- Model interpretability
 - Statistic model vs neural network
- Problem-driven
 - Study impact of certain factors ⇒ discriminative
 - Recognize behavioral pattern ⇒ clustering
 - Predict behaviors ⇒ deep learning, imitation learning

Thank you!

Please reach out if you have any questions

kenzhang@control.ee.ethz.ch

Papers presented in this talk

- Zhang, Chen and Nie. Hunting image: Taxi search strategy recognition using Sparse Subspace Clustering. TR-C, 2019
- Zhang, Zhong and Nie. Correcting mislabeled taxi trajectory occupancy status using Input-Output Hidden Markov model. TRB Annual Meeting, 2018

