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Background

* \Vehicle trajectory as a probe of urban dynamics
* Mobility profiling?

1 Liu et al. Understanding intra-urban trip patterns from taxi trajectory data. J. Geogr. Syst., 2012

* Community & hotspot detection??3

2 Liu et al. Revealing travel patterns and city structure with taxi trip data. J. Transp. Geogr., 2015 A )
3 Chang, Tai and Hsu. Context-aware taxi demand hotspots prediction. Int. J. Bus. Intell. Data Min., 2010 - A
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* Traffic prediction*

4 Zhang et al. Deep spatiotemporal residual networks for city wide crowd flows prediction. AAAI, 2017 _ , _
Community detection results (Liu et al., 2012)

e Location/Route recommendation=-®

5 Lee, Shin and Park. Analysis of the passenger pick-up pattern for taxi location recommendation. IEEE NCM, 2008
6 Yu et al. A Markov decision process approach to vacant taxi routing with e-hailing. TR-B, 2019
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= Analysis at the aggregate level rather individual level
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Personalized hotspot score (Chang, Tai and Hsu., 2010)
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Outline

* Data & preprocessing
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Data

* Taxi GPS trajectories
* All registered taxis in Shenzhen, China (~20K by 2020)

* Average record intervel is 20 sec (~20B rows per week)

Instantaneous
Taxi ID Timestamp Coordinates speed and orientation Occupancy
/ / / N\ 7N\ /
taxiid . time o lon , lat . Vvelocity o angle . Ppassenger P
character varying (12) timestamp without time zone double precision double precision integer integer smallint
UuuuBOCOM7 2020-01-01 00:19:43 114.125206 22.567154 0 171 0
uuuBoCOM7 2020-01-01 00:19:43 114.125206 22.567154 0 171 0
uuuBoCOM7 2020-01-01 00:19:58 114.125206 22.567154 0 171 0
uuuBOoCOM7 2020-01-01 00:20:13 114.125206 22.567154 0 171 0 vacant
uuuBoCOM7 2020-01-01 00:20:28 114.125206 22.567154 0 171 0
uuuBoCOM7 2020-01-01 00:20:28 114.125206 22.567154 0 171 0
uuuBOCOM7 2020-01-01 00:20:30 114.125206 22.567154 0 171 0
pickup

uuuB0COM7 2020-01-01 00:22:55 114.124718 22.562443 19 89
uuuBOoCOM7 2020-01-01 00:24:23 114.125198 22.559134 2 60 1
uuuBOoCOM7 2020-01-01 00:24:26 114.125412 22.559196 35 Sil 1
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Preprocessing

Distribution of pickups and dropoffs

e Geographic information augmentation
* Mapping to Transportation Analysis Zone (TAZ)

* Mapping to road segment!

* Trip segmentation
* Based on the change in occupancy status?

* Hotspot extraction

* TAZ clustering by iDBSCAN?

e Distance: centroid distance

Hotspot areas

* Weight: pickup and dropoff number

1 Wu et al. Map matching based on multi-layer road index. TR-C, 2020
2 Nie. How can the taxi industry survive the tide of ridesourcing? Evidence from Shenzhen, China. TR-C, 2017
3 Pan et al. Land-use classification using taxi GPS traces. IEEE ITS, 2013
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Outline

* Learning patterns from trajectories
* Taxi search strategy recognition
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Motivation

e |dentify different search strategies among idividual taxi drivers

* Previous work
* Preclassified driver groups!-2

* Predefined search strategies?

1 Liu, Andris and Ratti. Uncovering cabdrivers’ behavior patterns from their digital traces.
Comput. Environ. Urban Syst., 2010
2 Zhang et al. Understanding taxi service strategies from taxi GPS traces. IEEE ITS, 2015

* Related work
* Model drivers as rational agents with full information?

* Design optimal search path based on historical data*

3 Wong et al. Modeling the bilateral micro-searching behavior for urban taxi services using the
absorbing Markov chain approach. J. Adv. Transp., 2005
4 Yu et al. A Markov decision process approach to vacant taxi routing with e-hailing. TR-B, 2019

= Directly learn taxi search strategies from data
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Hunting image

* An image-based representation of individual behaviors

* Pixel = Spatiotemporal index

* Channel = Features

Search trips of each taxi
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Feautre engineering

e Cruising characteristics
* Cruising speed v, = d,/t,;, where d, ts are search distance and time, respectively

* Cruising ratior, = {1 ds =0

d/l., d,>0 where [ is line distance between search origin and destination

v, = 12.65 mph, 1, = 2.64 v, = 22.49 mph, 1. = 1.39 ve = 12.71 mph, 1, = 2.38
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Feautre engineering

e Search driven by pickup probability

* Normalized demand and supply by location and time D%t = ?a't. sat =

* Demand-supply ratio R*t = p&t /§at
« Difference in demand-supply ratio: AR = log(R%*) — log(R*)

Normalized demand and supply on daily average
Norm. demand

-
0.00 0.10

Norm. supply

© 2022 Mapbox © OpenStreetMap © 2022 Mapbox © OpenStreetMap
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Feautre engineering

e Search driven by expected revenue
» Distance of next passenger trip dp

Average next passenger trip distance over time
0.75

0.70
0.65
0.60
0.55
0.50
0.45

0.40

Smoothed avg. next passenger trip distance (mi)

0.35

0.30
0 5 10 15 20 25 30 35 40

Time index

ETH:zurich

M Taxi 1
M Taxi 2

45 50

Kenan Zhang 29.03.2022

10



Strategy recognition

e Sparse space clustering (SSC):

* Problem: Identify low-dimensional structure embedded in a high-dimensional feature space

* |dea: Represent each taxi driver as linear sparse combination of others

= similar drivers have non-zero weights in the representation matrix

e Sparse representation problem
 Feature matrix Y € RV*M

« Representation matrix C € RM*M

Original formulation Relaxed to [,-norm

min ||C|| min ||C||
C 0 C 1
s.t. Y =YC, » s.t. Y =YC,
diag(C) =0 diag(C) =0

1 Elhamifar and Vidal. Sparse subspace clustering. CVPR, 2009
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Consider outlying entries

» min [C1], +v|IZI],
s.t. Y=YC+ Z,
diag(C) =0
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Strategy recognition

e Sparse space clustering (SSC)
* Solve the representation matrix with ADMM!
* A more compact form
min | 11|, min [|B]|,
s.t.Y=PX, X;=0,i=1,..,.M » s.t. Y =PX,
where X = [C,yZ]T, P =[Y,1/y]

* Augmented Lagrangian

Loy (X, B, A, 29) = |IBI|, + 2 |IY = PX||, + 21X = BI|, + tr (AT = P0)) +tr (25X - BY)
* |terative rules

X'HL = (pyPTP + p) ™M (pr PTY + pp B + PT2Y — 25)

B¥*1 =S, (X**1 + 285 /p,) soft-thresholding with parameter 1/p,

A+t =25 + p (Y — Px*HY

/1]2c+1 _ Alzc n pz(Xk+1 . Bk+1)

1 Boyd et al. Distributed optimization and statistical learning via the alternative direction methods of multipliers, 2011
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Strategy recognition

e Sparse space clustering (SSC)
* Spectral clustering on the representation matrix

e Construct similarity matrix
* Normalize C* by column ¢ = ¢;'/|¢{ |
 Ensure symmetry C = |C*| + |C*|T

* K-means clustering on the normalized graph Laplacian

L=1-D"Y2CD"1/2
where D = diag{3,; C;;}

e Cluster number determined based on the number of zero-eigenvalaues of L

1 Boyd et al. Distributed optimization and statistical learning via the alternative direction methods of multipliers, 2011
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Experiment

* Setting

* Weekday trips during five weeks in 2016, each from a different month

» 885 taxis are selected, which
e continuously operate in the analysis period
* have at least 450 valid search trips (~18 trips per day)

* |mage construction
e Time horizon: discretized by half-hour intervals
* Space horizon: discretized by search distance percentile with 2% increment

* Pixel value: average feature value of trips in corresponding space-time slot

ETH:zurich Kenan Zhang 29.03.2022
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Experiment

* Image smoothing

e Gaussian filtering + max-pooling

* Clustering results

Eigenvalues of L
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Experiment

e Results of selected taxi clusters <.
* Common patterns g
* Feature distribution N
e Special time windows N
* Difference in strategies %
e Direct search vs local cruising
* e.g., Cluster 2 and Cluster 4 §
* Long-distance vs short-distance S
* e.g., Cluster 0 and Cluster 2 .-
e Search at night §
* e.g., Cluster 0 and Cluster 5 S
5
S

40 10 20 30 40
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Takeaways

* Image-based represention of individual behaviors
* Enable analysis of behavioral patterns using image processing and learning methods

e First expand the feature space then do subspace clustering
* Make full use of the information

* Avoid the curse of dimensionality

ETH:zurich Kenan Zhang 29.03.2022
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Outline

* Learning latent state from trajectories
* Taxi occupancy status correction
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Motivation

* Mislabeled occupancy status Spe k)

0.0

. . . -® 20.0
* |Lead toincorrect trlp Segmentatlon oot "N 40.0

@
_ _ _ _ o’ ‘ Change in occupancy a0.8
* Unable to fix through simple filtering ., .. o/ onhighway >800

Occupancy
%o :

1

* Learning with label noise
* Data cleansing: detect anomaly/outliers (e.g., SVM?)

* Noise-robust model: use model robust to noise (e.g., risk minimization?)

* Noise-tolerant model: incorporate label noise in learning (e.g., Bayesian3)

1 Thongkam et al. Support vector machine for outlier detection in breast cancer survivability prediction. Asia-Pacific Web Conf., 2008
2 Manwani and Sastry. Noise tolerance under risk minimization. IEEE Cyber, 2013
3 Swartz et al. Bayesian identifiability and misclassification in multinomial data. Can. J. Statist., 2004
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Problem statement

* Definitions
* Trajectory sequence s = {et}%;l

* aseries of GPS records such that the time between any two consecutive points is less than a threshold

Occupancy transition ¥; = (0¢_1, 0¢)

e transition in occupancy status between two consecutive points

State z; € {vacant, pickup, occupied, dropoft}

* each produce different occupancy transitions

Input features u;

* independent on but affect state z; (e.g., time of day, location)

Output features x;

* dependent on state z; (e.g., vehicle movement)

* Main objective

* Predict state sequence {Zt}Z::l based on the input and output features, along with observed
occupancy transitions, i.e., {us, x¢, ¥} ieq

ETH:zurich Kenan Zhang 29.03.2022 21



|IO-HMM formulation

* Input-output hidden Markov model
e Causal graph

input features :
U

obs. occupancy

transition
other output features
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|IO-HMM formulation

* Input-output hidden Markov model
* Parameterization ©(q, 4, b, e)

* Initial state distribution  q; = P(Z; = i) U4

* State transition ajju =PZ =jlZi—1 =i, U = u)
e Emission probability bi1x = P(Xt,l =x|Z; = i)
Ciy = P(?t =ylZ, = i)

» Solution algorithm: expectation-maximization (EM)
e E step: compute posterior via forward-backward algorithm

* M step: update parameters via MLE

ETH:zurich Kenan Zhang 29.03.2022
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Feature engineering

* Input features
* “night” (binary)
* “hotspot” (binary)
* “highway” (binary)

* “no-trans” (binary): transition is not likely to happen due to infeasible acceleration

e Qutput features
* “unf-acc-dec” (categorical): moving at a uniform/increasing/decreasing speed

» “straight-return-largeturn” (categorical): moving straight/regular turn/sharp turn
* “move-shortstop-longstop” (categorical): moving/short-time stop/long-time stop

» “obstrans” (categorical): observed occupancy transition

ETH:zurich Kenan Zhang 29.03.2022
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Experiment

* Trajectory preprocessing
* Speed and orientation filtering using both instantaneous values and consecutive coordinates

* Segment data into trajectory sequences with time gap threshold 300 sec
* Training

* 2,000 sequences (~800K GPS points) divided into 10 batches, 20 taxis per batch and 10
sequences per taxi

* One model is trained for each batch with 100 times random initialization

* Testing

* 115 sequences (~40K GPS points) with manually corrected labels

* Small sample of trajectories with a large amount of errors

ETH:zurich Kenan Zhang 29.03.2022
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Experiment

e Prediction accuracy and robustness
* Transform predicted states back to occupancy status

» assume flip in occupancy happens at the end of pickup/dropoff interval
* Evaluate predictions on occupancy flips rather occupancy status
* true-positive (TP): an occupancy flip is observed in a predicted pickup/dropoff interval
 false-positive (FP): within a predicted pickup/dropoff interval, no occupancy flip is observed
* Robustness analysis

* manually added noise with Poisson occurrence (with prmt. A) and Exponential duration (with prmt. )

A B Recall Precision F1 score
Baseline” - = 0.9699 0.9699 0.9699
Rand. 0.05 5 0.8955 -0.0744 0.5679 -0.4020 0.6950 -0.2749
Rand. 0.05 10 0.9130 -0.0569 0.7022 -0.2677 0.7938 -0.1761
“highway” =T 0.1 5 0.9686 -0.0013 0.9507 -0.0192 0.9596 -0.0103
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Experiment

e Performance of label correction
* Works well with simple and long trips with several mislabeled segmemts

@
. '\.‘
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Experiment

* Performance of label correction
* Fail to handle trips with complex behaviors and fix errors in highly corrupted data

Distribution of trip duration
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Takeaways

* Sequential representation of individual behaviors
* With latent states and observable contexts (“input”) and behaviors (“output”)

* Deal with noisy and missing label
* Model it as a feature and learn the true label based on it

ETH:zurich Kenan Zhang 29.03.2022
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Outline

e Discussions
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Discussions

* |ssue of data sparsity
e 10M GPS points = 450K trips = 500 trips per taxi = 0.2 trip per space-time slot

* Representation of behaviors
e Spatial and temporal interdependence

* Model interpretability

e Statistic model vs neural network

* Problem-driven
e Study impact of certain factors = discriminative

e Recognize behavioral pattern = clustering

* Predict behaviors = deep learning, imitation learning
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Thank youl!

Please reach out if you have any questions

kenzhang@control.ee.ethz.ch

Papers presented in this talk
* Zhang, Chen and Nie. Hunting image: Taxi search strategy recognition using Sparse Subspace Clustering. TR-C, 2019
* Zhang, Zhong and Nie. Correcting mislabeled taxi trajectory occupancy status using Input-Output Hidden Markov model. TRB Annual Meeting, 2018
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