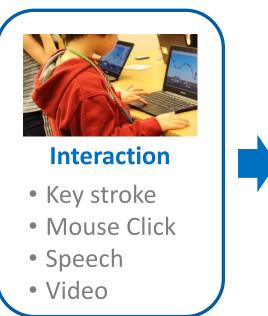
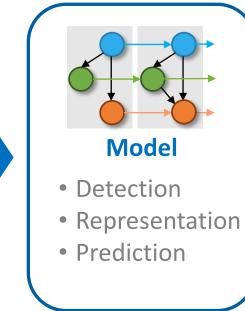
Tanja Käser January 2020

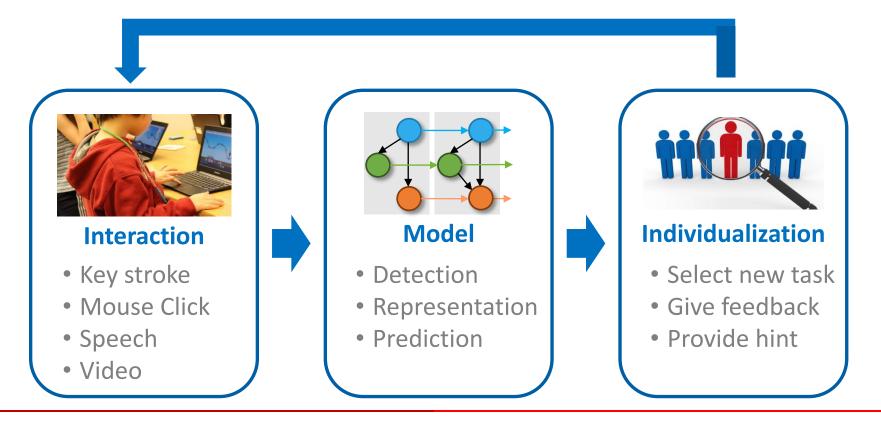
Human teachers individualize learning

Interaction

- Key stroke
- Mouse Click
- Speech
- Video

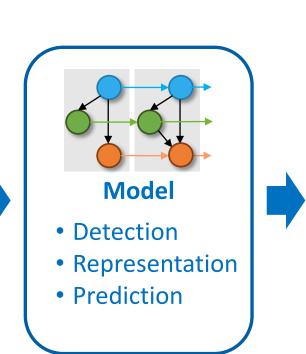






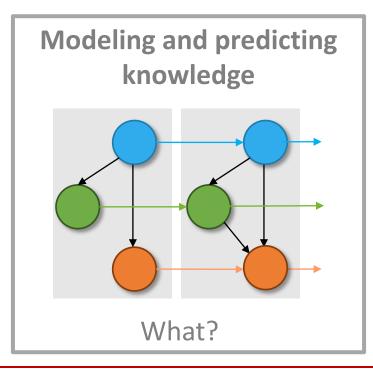
Interaction

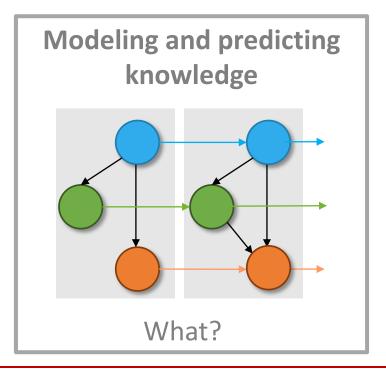
- Key stroke
- Mouse Click
- Speech
- Video

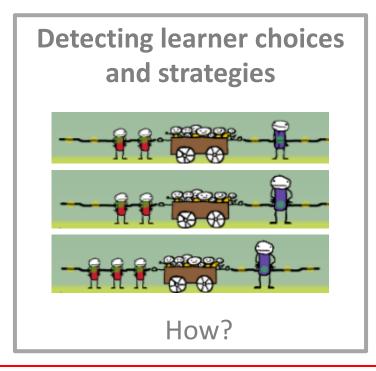


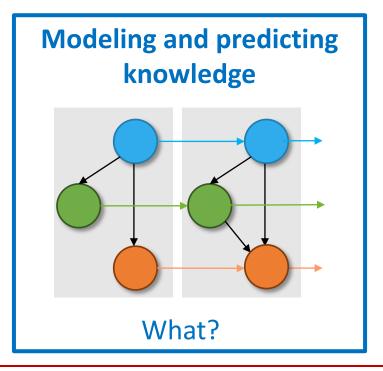
Individualization

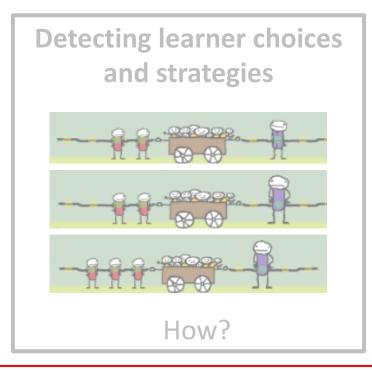
- Select new task
- Give feedback
- Provide hint











Inferring knowledge based on student answers

Subtraction 0-10

Inferring knowledge based on student answers

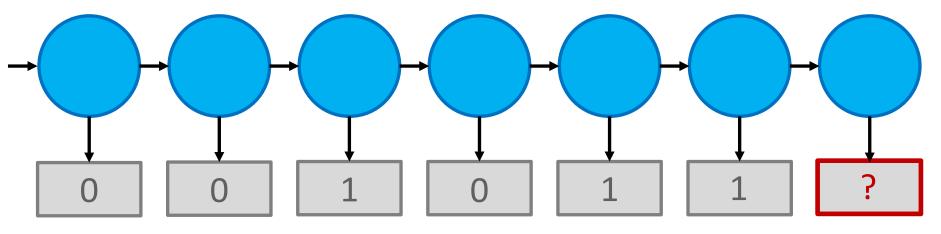
Subtraction 0-10

Bayesian Knowledge Tracing (BKT)

Subtraction 0-10

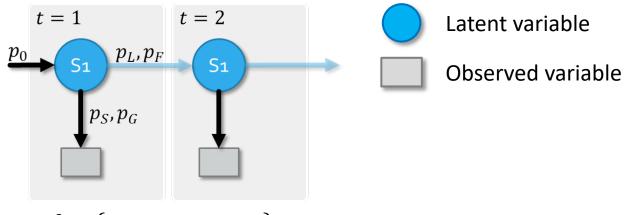
Latent variable

Observed variable



BKT models are simple, efficient, and interpretable

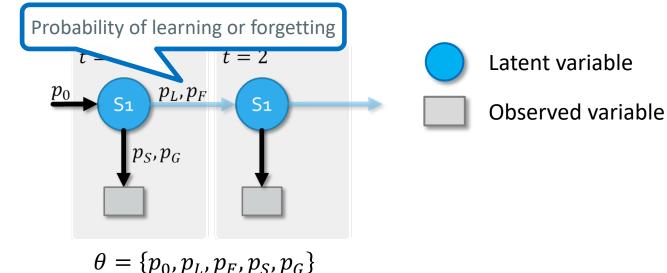
Bayesian Knowledge Tracing (BKT)



 $\theta = \{p_0, p_L, p_F, p_S, p_G\}$

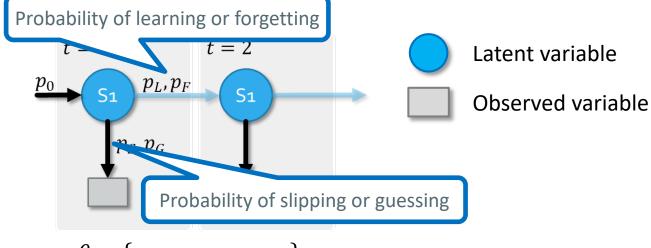
BKT models are simple, efficient, and interpretable

Bayesian Knowledge Tracing (BKT)



BKT models are simple, efficient, and interpretable

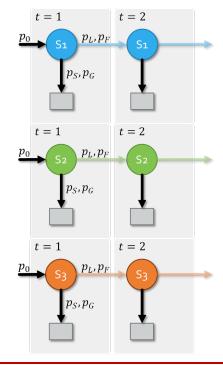
Bayesian Knowledge Tracing (BKT)



 $\theta = \{p_0, p_L, p_F, p_S, p_G\}$

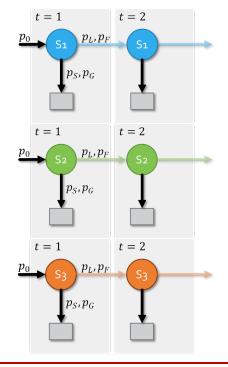
... but they have limited representational power

Bayesian Knowledge Tracing (BKT)

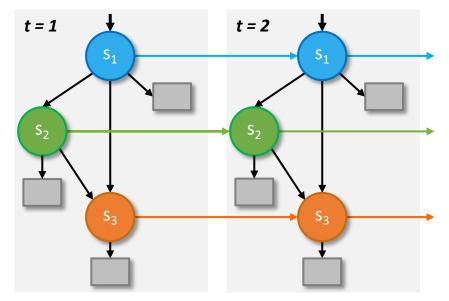


DBNs can model interactions between variables

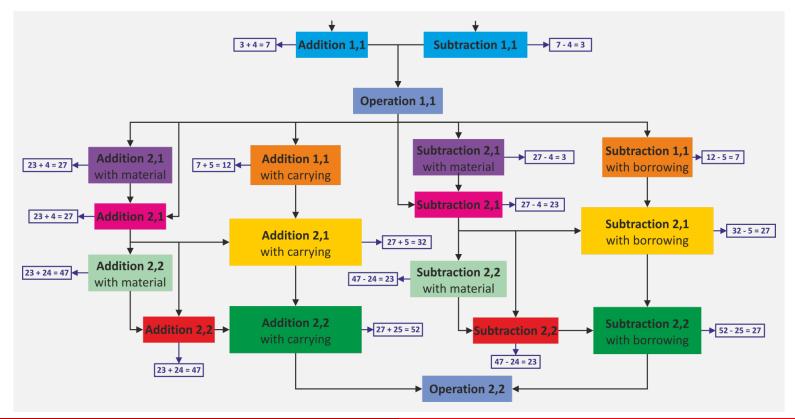
Bayesian Knowledge Tracing (BKT)



Dynamic Bayesian Networks (DBN)

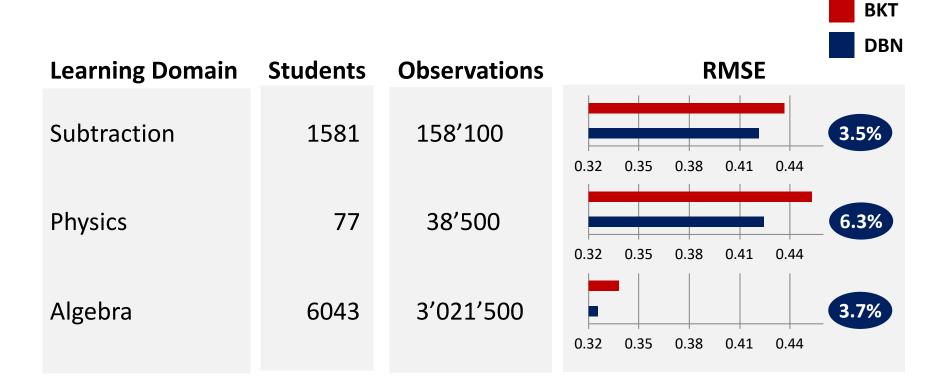


Example: DBN representing mathematical skills



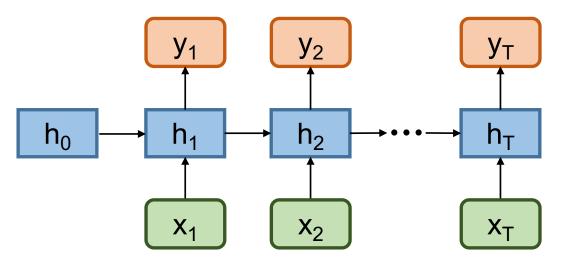
[Käser et al., Frontiers 2013; Käser et al., AISTATS 2014]

DBNs outperform BKT in different learning domains



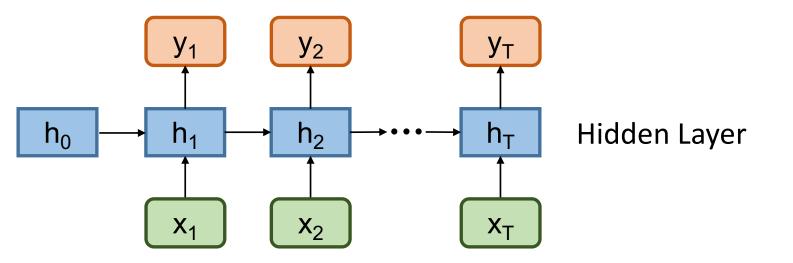
[Käser et al., ITS 2014; Käser et al., IEEE TLT 2017]

Deep Knowledge Tracing

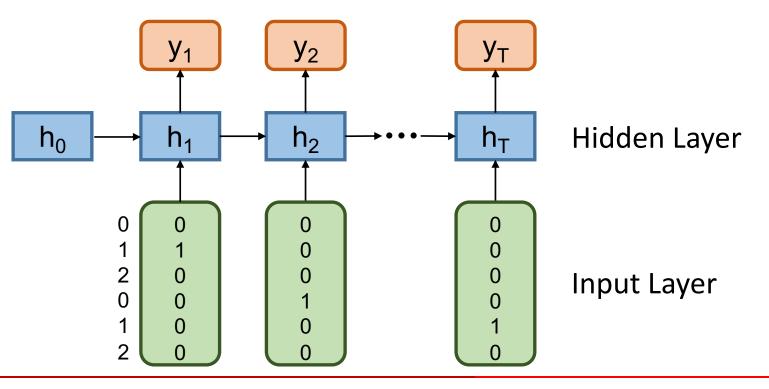


[Piech et al., NIPS 2015]

Hidden layer captures relevant information

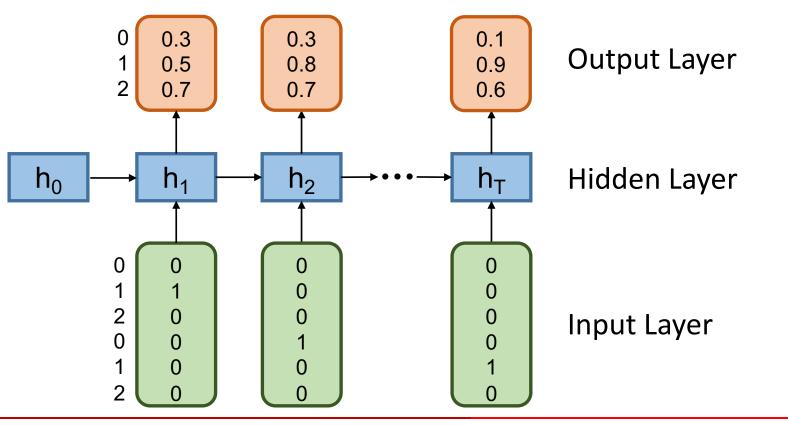


Input layer represents observations



[Piech et al., NIPS 2015]

Output layer consists of predicted probabilities



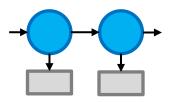
[Piech et al., NIPS 2015]

Deep Knowledge Tracing outperforms BKT

Data Set	Students	Observations	AUC	ВКТ
Khan Academy (Math)	47'500	1'435'000	0.6 0.65 0.7 0.75 0.8 0.85	DKT
Assistments (Math)	19'457	707'944	0.6 0.65 0.7 0.75 0.8 0.85	
KDD Cup 2010 (Algebra)	574	607'026	0.6 0.65 0.7 0.75 0.8 0.85	

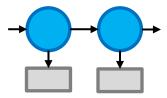
[Piech et al., NIPS 2015; Xiong et al., EDM 2016]

Modeling and Predicting Student Knowledge

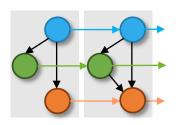


Bayesian Knowledge Tracing is simple, efficient, and interpretable

Modeling and Predicting Student Knowledge

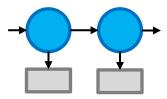


Bayesian Knowledge Tracing is simple, efficient, and interpretable

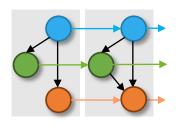


Dynamic Bayesian Networks can represent the hierachical relations between the different skills

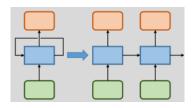
Modeling and Predicting Student Knowledge



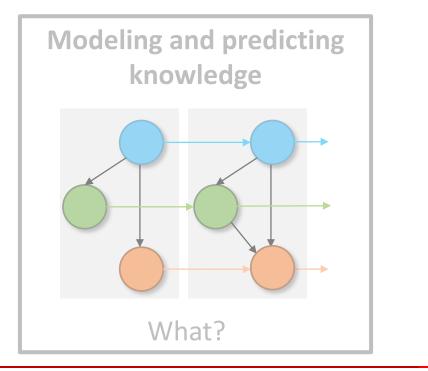
Bayesian Knowledge Tracing is simple, efficient, and interpretable

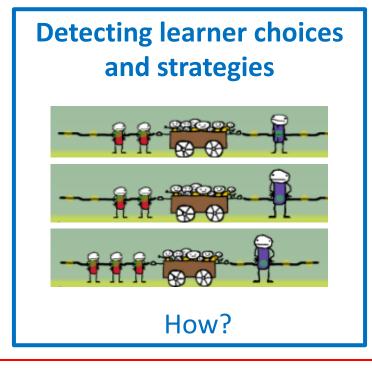


Dynamic Bayesian Networks can represent the hierachical relations between the different skills

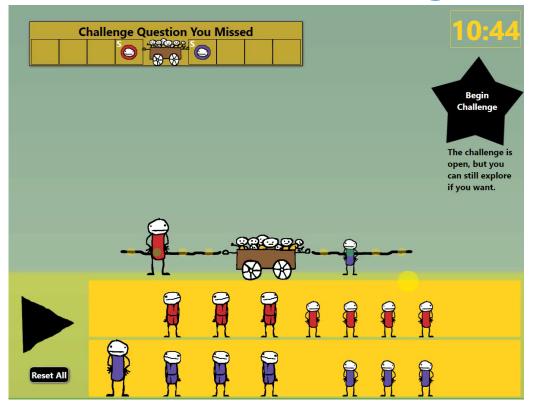


Deep Knowledge Tracing can learn non-linear relationships and implicitly captures the relations between the skills

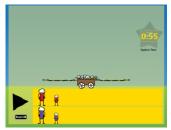


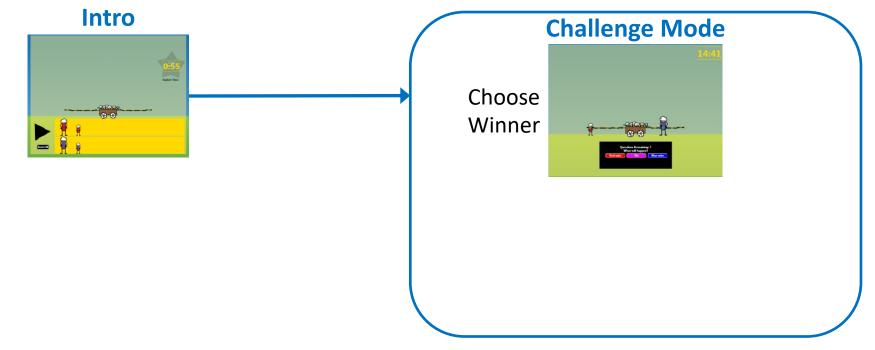


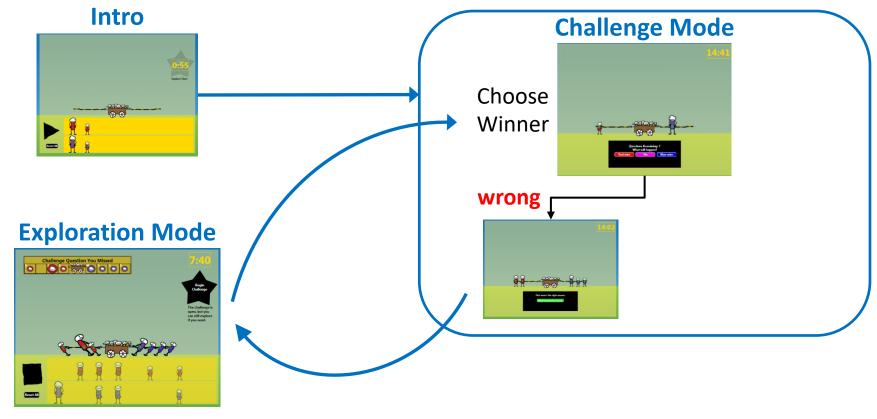
Which team wins the tug-of-war?

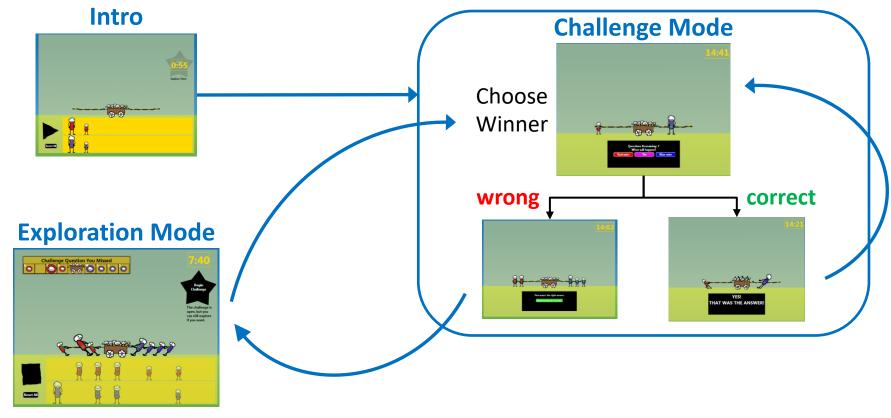


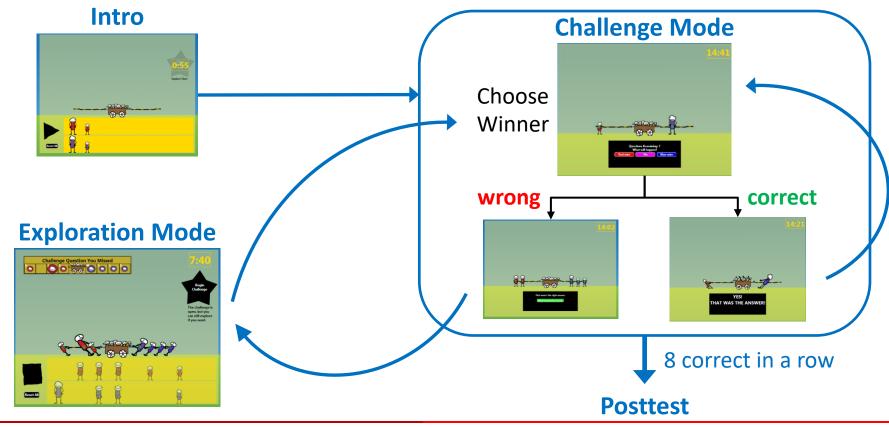
Intro





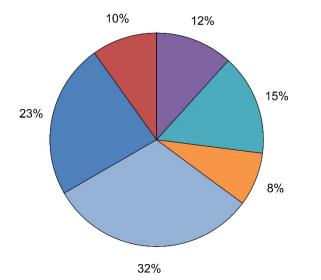




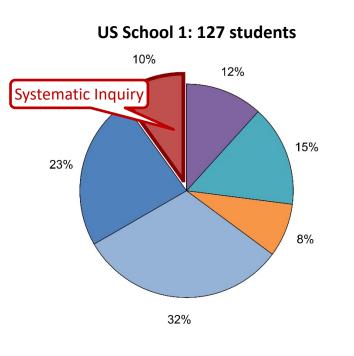


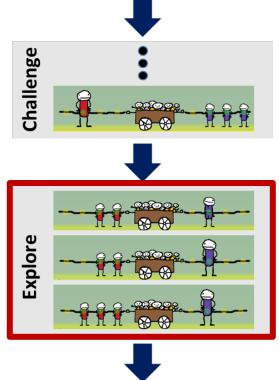
Students can be divided into six different clusters

US School 1: 127 students

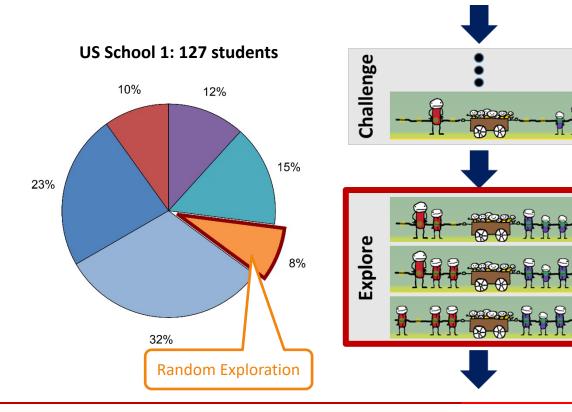


The best students explore systematically

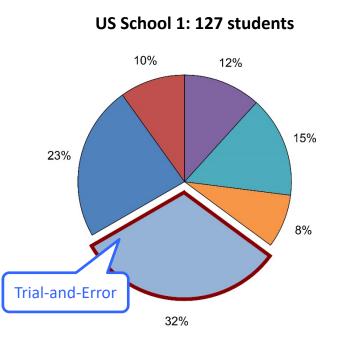


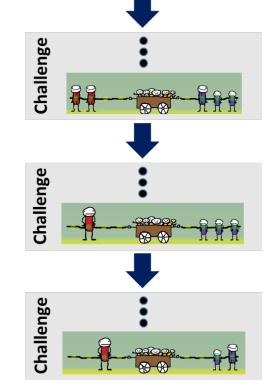


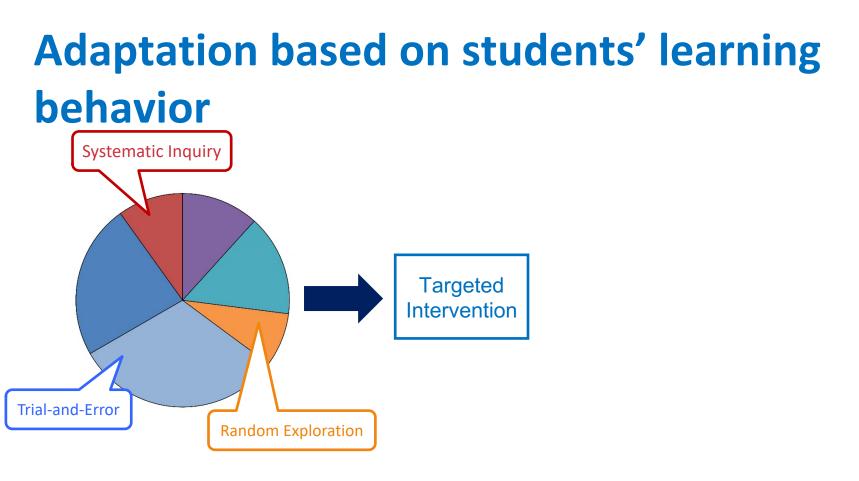
Persistent inquiry alone is not enough



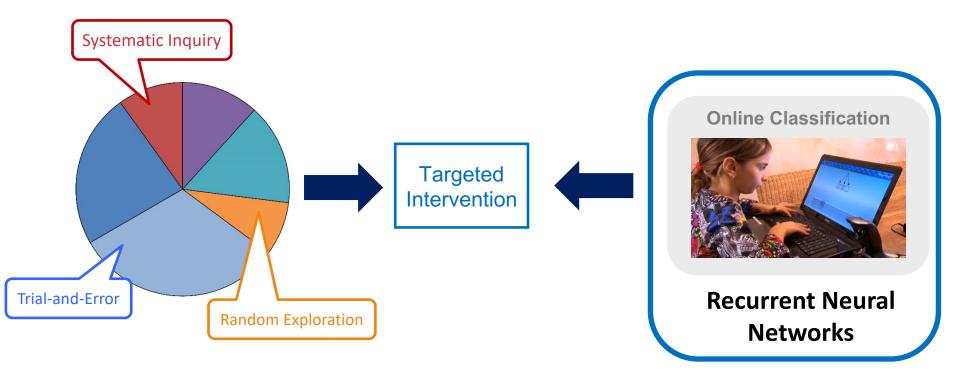
Many students just try to beat the game



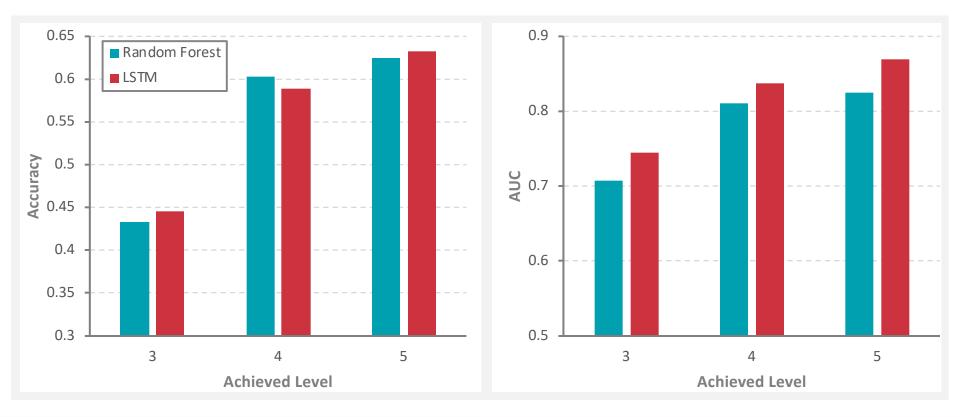




Exploring the use of recurrent neural networks

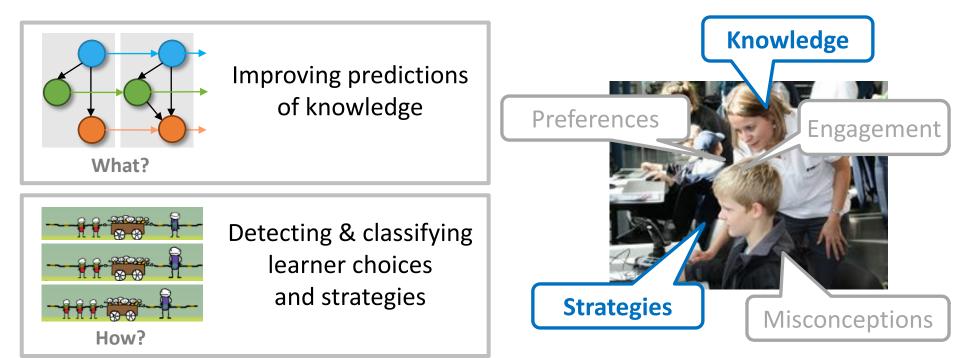


LSTMs are similar or better at important levels



[Käser & Schwartz, EDM 2019]

Modeling and Individualizing Learning in Computer-Based Environments



Questions?

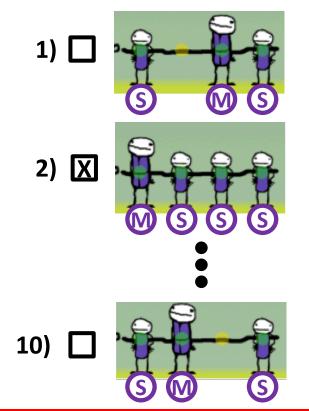
tanja.kaeser@sdsc.ethz.ch

References

- 1) Corbett, A. T., and Anderson, J. R. (1995). *Knowledge tracing: Modeling the acquisition of procedural knowledge*. User Modeling and User-Adapted Interaction
- 2) Yudelson, M.V., Koedinger, K.R., and Gordon, G.J. (2013). *Individualized bayesian knowledge tracing models*. Proceedings of AIED
- 3) Käser, T., Baschera, G., Kohn, J., Kucian, K., Richtmann, V., Grond, U., Gross, M., and von Aster, M. (2013). *Design and evaluation of the computer-based training program Calcularis for enhancing numerical cognition*. Frontiers in Psychology
- 4) Käser, T., Klingler, S., Schwing, A., and Gross, M. (2014). *Computational Education using Latent Structured Prediction*. Proceedings of AISTATS
- 5) Käser, T., Klingler, S., Schwing, A., and Gross, M. (2014). Beyond KnowledgeTracing: Modeling Skill Topologies with Bayesian Networks. Proceedings of ITS
- 6) Piech, C., Bassen, J., Huang, J., Ganguli, S., Sahami, M., Guibas, L., and Sohl-Dickstein, J. (2015). *Deep Knowledge Tracing*. Proceedings of NIPS
- 7) Xiong, X., Zhao, S., Van Inwegen, E. G., Beck, J. E. (2016). Going Deeper with Deep Knowledge Tracing. Proceedings of EDM
- 8) Käser, T., Klingler, S., Schwing, A., and Gross, M. (2017). Dynamic Bayesian Networks for Student Modeling. *IEEE Transactions* on Learning Technologies
- 9) Käser, T., and Schwartz, D. L. (2019). Exploring Neural Network Models for the Classification of Students in Highly Interactive Environments. *Proceedings of EDM*

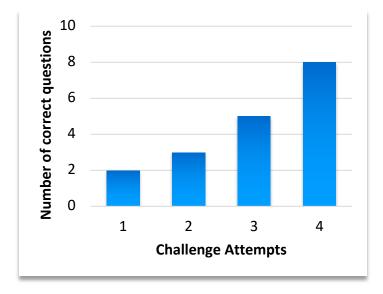
Description of US data sets

	US School 1	US School 2	
Number of students	127	165	
Age	8 th grade	8 th grade	
Time in exploration mode	42%	23%	
Students passing the game	87%	97%	
Students with perfect post-test	24%	34%	
Average post-test score	2.1	2.6	



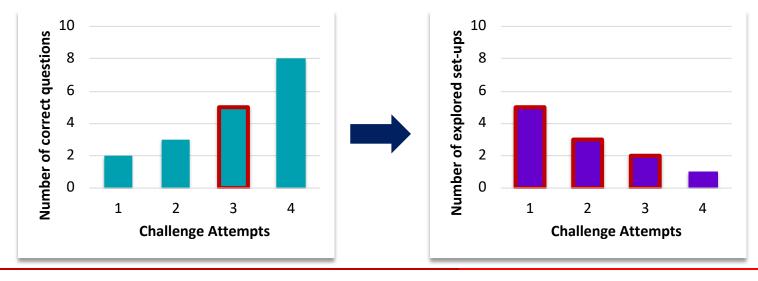
Clustering students based on features describing their exploration behavior

Number of challenge questions answered until passing a level (NC)



Clustering students based on features describing their exploration behavior

- Number of challenge questions answered until passing a level (NC)
- Number of explored set-ups until passing a level (NS)

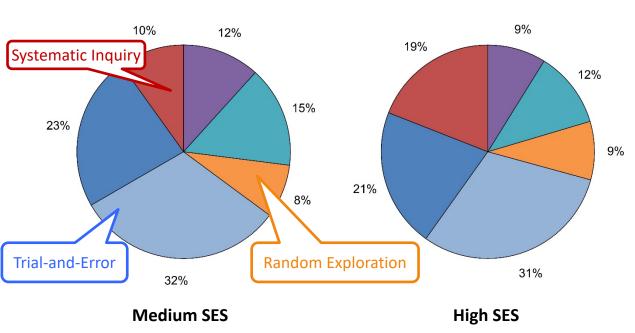


Clustering students based on features describing their exploration behavior

- Number of challenge questions answered until passing a level (NC)
- → Number of explored set-ups until passing a level (NS)
- Number of explored set-ups rated as strong until passing a level (NSS)

Large = 3*Small

The cluster solution was replicated on a second independent data set

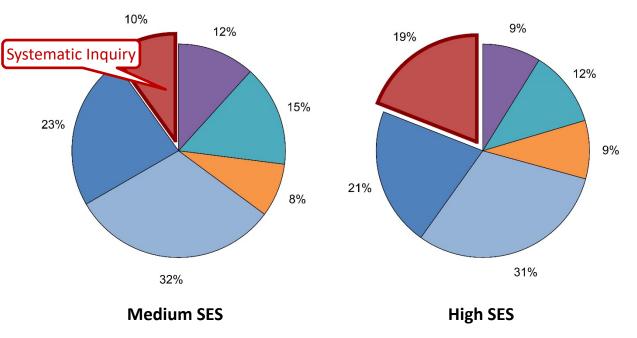


US School 1: 127 students

US School 2: 165 students

[Käser & Schwartz, IJAIED (under review)]

More students explore systematically

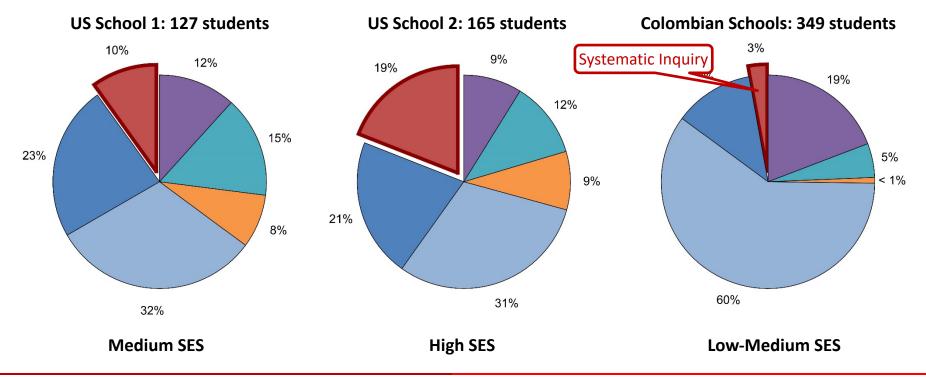


US School 1: 127 students

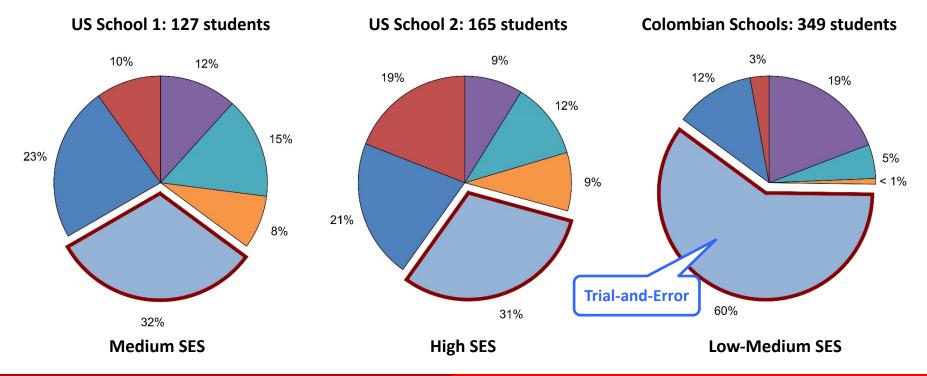
US School 2: 165 students

[Käser & Schwartz, IJAIED (under review)]

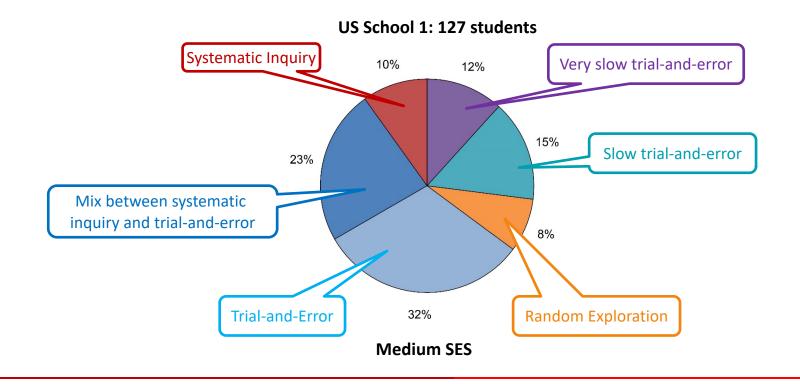
Exploring students' inquiry strategies across cultural context



Exploring students' inquiry strategies across cultural context



Clusters can be semantically interpreted



Pairwise Clustering

Constant shift embedding transformation

similarities = distances in higherdimensional Euclidean space

k-Means Clustering

Computation of BIC

 $BIC = -2 \cdot \log(L) + k \cdot \log(n) + (k - 1) + 1$

- L = likelihood of data
 - Fit Gaussian distribution per cluster
 - Estimate variance by distance to cluster centroid
 - Estimate mean by cluster centroid
 - Sum up gaussians over all clusters, taking into account the cluster probability
- k = number of clusters
- n = number of effective dimensions of transformation matrix

Likelihood Computation

• Variance
$$\sigma^2: \frac{1}{R-k} \cdot \sum_i (x_i - cc)^2$$

- R: Sample size
- k: Number of clusters
- cc: Centroid of according cluster

•
$$L_c = \frac{1}{p_c} \cdot \sum \frac{1}{\sqrt{2\pi\sigma^2}} \cdot e^{\left(\frac{x_{i-cc}}{\sigma}\right)^2}$$

– p_c: Prior probability for cluster

Cluster Stability

- US School 1: Original data set
- US School 2: New data set
- Cluster US School 1 -> Original clustering solution (OC)
- k-Nearest Neighbor assigns each sample from school 2 to a cluster c of OC -> vector of predicted labels I_p
- Cluster US School 2 -> New clustering solution with labels I_{NC}
- Cluster stability = Hamming distance between I_p and I_{NC}

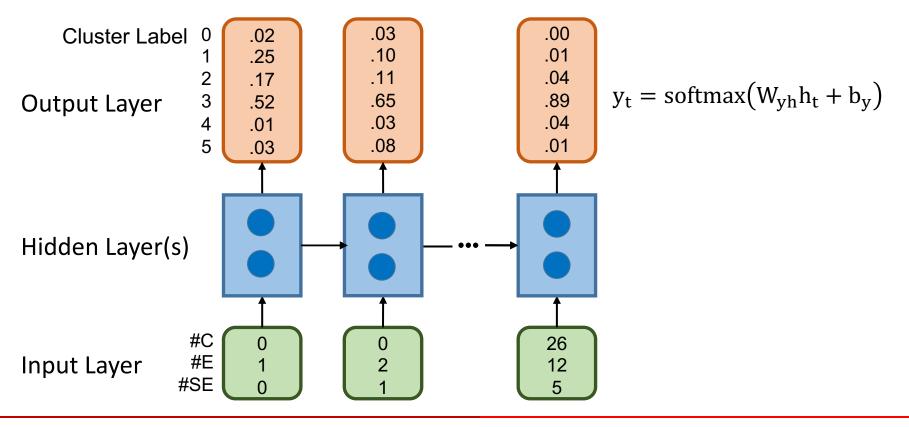
Exploring the use of recurrent neural networks

		1 x 4	1 x 8	1 x 16	1 x 32	2 x 2	2 x 4	2 x 8	2 x 16
LSTM	Predicting Sequence								
GRU	Pred Sequ								
LSTM	Optimized for point in time								
GRU	Optimi point i								

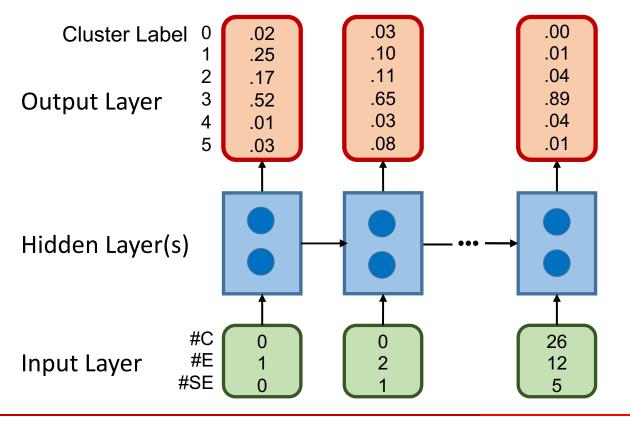
Exploring the use of recurrent neural networks

		1 x 4	1 x 8	1 x 16	1 x 32	2 x 2	2 x 4	2 x 8	2 x 16
LSTM	Predicting Sequence								
GRU	Pred Sequ								
LSTM	Optimized for point in time								
GRU	Optimi point i								

Output layer consist of predicted probabilities



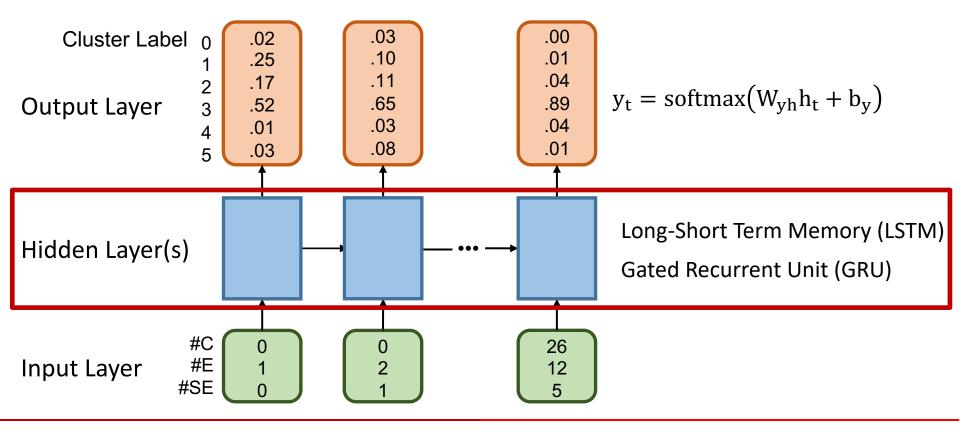
Model outputs a probability at each time step



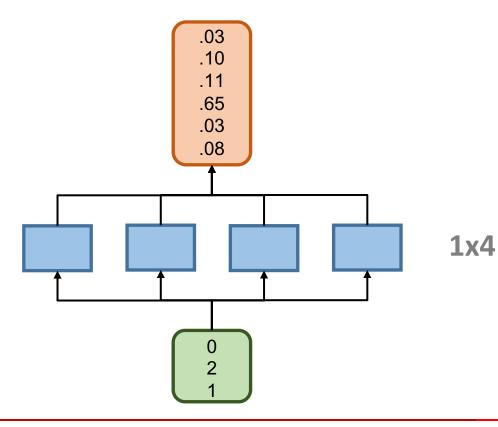
Model (Seq)

Model outputs a probability at the end .00 .01 Model (End) .04 .89 **Output Layer** .04 .01 Hidden Layer(s) #C 0 2 26 0 #E 12 Input Layer #SE 5 0

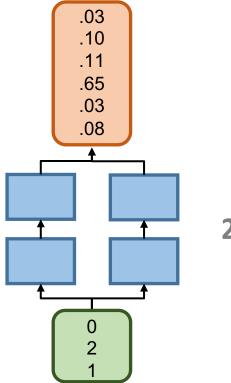
Hidden layer captures relevant information



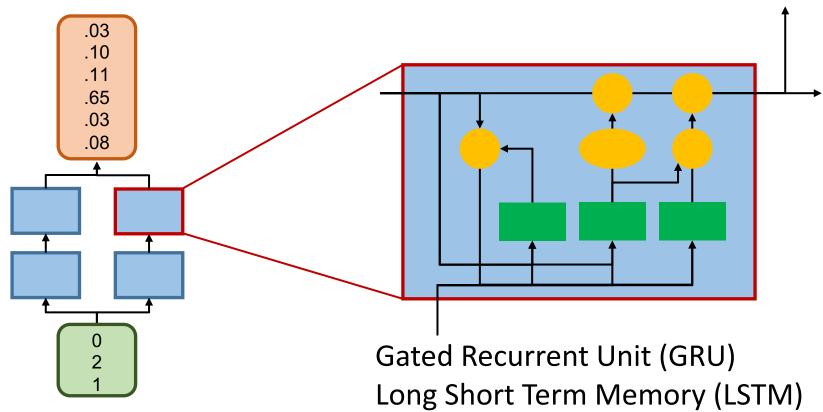
Number of hidden layers and cells per layer vary



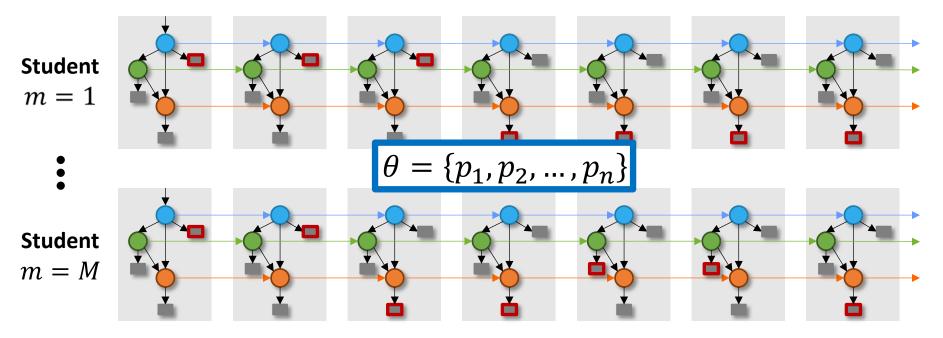
Number of hidden layers and cells per layer vary



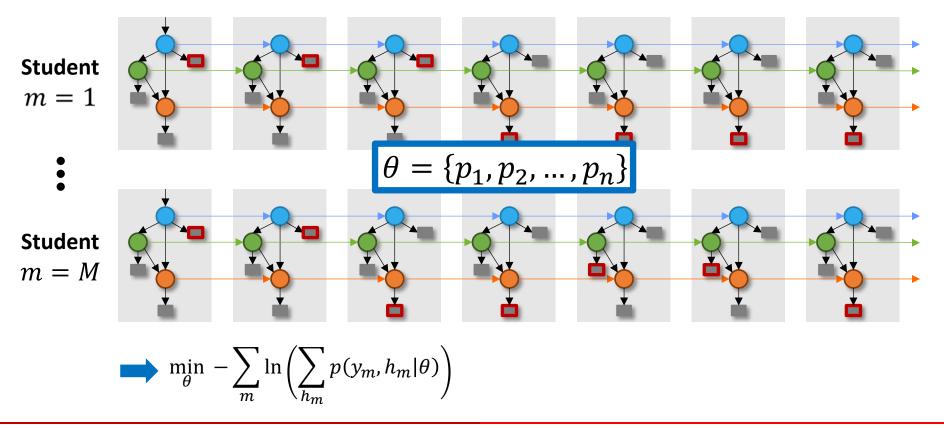
Architecture of cells varies



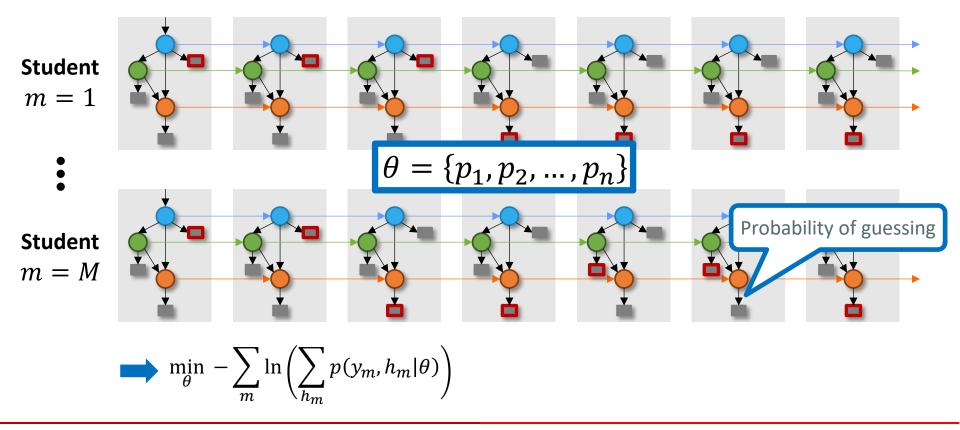
Parameter learning is computationally intractable



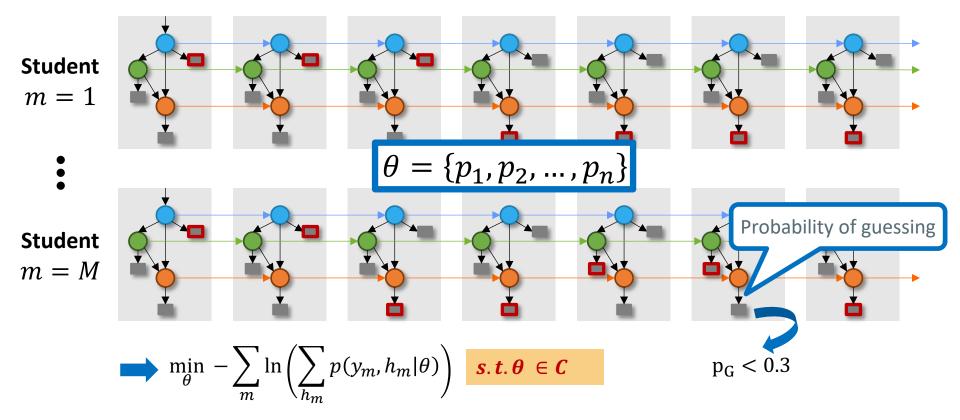
Parameter learning is computationally intractable



Parameter constraints guarantee interpretability



Parameter constraints guarantee interpretability



From probabilistic notation to log-linear formulation

$$L(\theta) = \sum_{m} \ln\left(\sum_{h_m} p(y_m, h_m | \theta)\right)$$

$$L(w) = \sum_{m} ln\left(\sum_{h_m} exp(\mathbf{w}^T \phi(y_m, h_{m}) - \ln(Z))\right)$$

From probabilistic notation to log-linear formulation

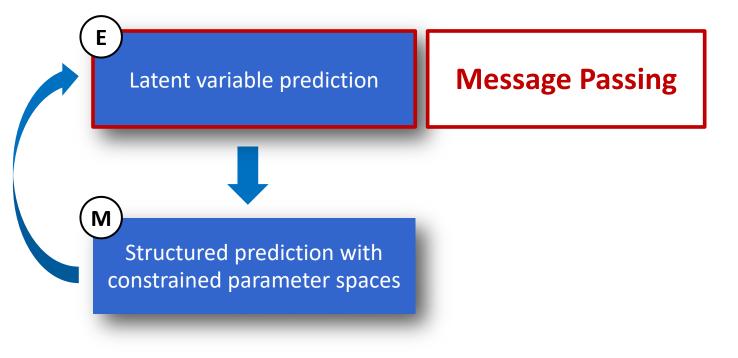
$$L(\theta) = \sum_{m} \ln\left(\sum_{h_{m}} p(y_{m}, h_{m}|\theta)\right)$$
$$\phi = 1 - 2v, V \in Y \cup H$$
$$L(w) = \sum_{m} \ln\left(\sum_{h_{m}} exp(w^{T}\phi(y_{m}, h_{m}) - \ln(Z))\right)$$

Latent variable prediction

Ε

Μ

Structured prediction with constrained parameter spaces



Latent variable prediction

E

Μ

Until Convergence

Structured prediction with constrained parameter spaces

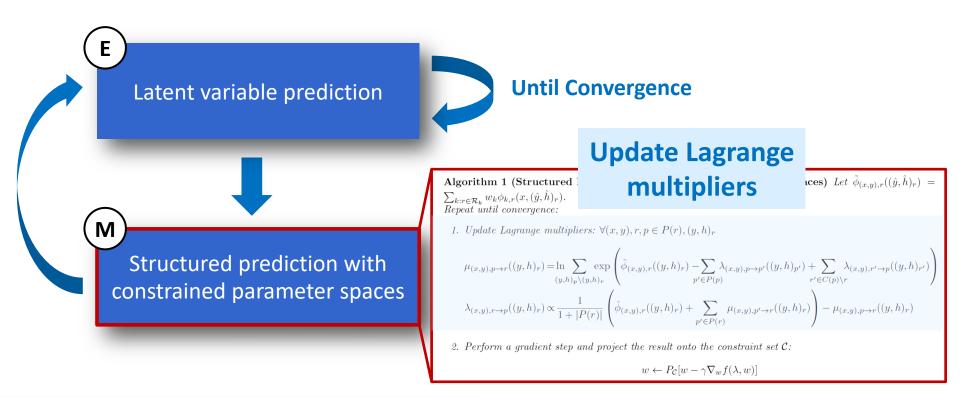
Algorithm 1 (Structured Prediction with Constrained Parameter Spaces) Let $\tilde{\phi}_{(x,y),r}((\hat{y},\hat{h})_r) = \sum_{k:r \in \mathcal{R}_k} w_k \phi_{k,r}(x, (\hat{y}, \hat{h})_r).$ Repeat until convergence:

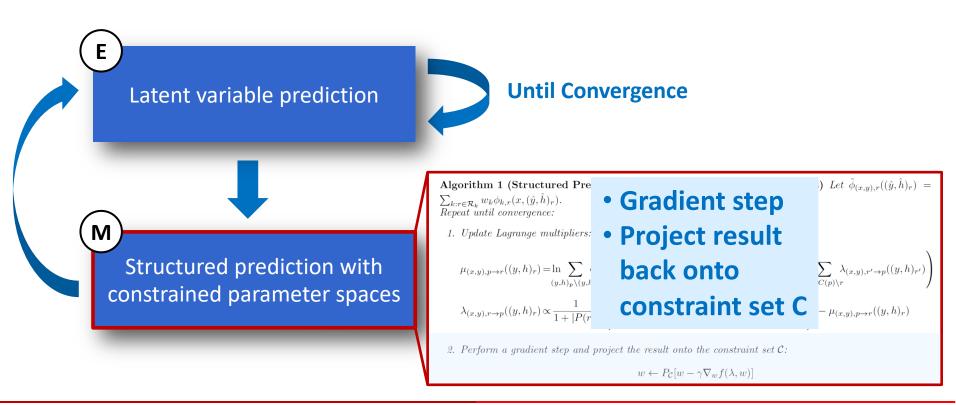
1. Update Lagrange multipliers: $\forall (x, y), r, p \in P(r), (y, h)_r$

$$\mu_{(x,y),p \to r}((y,h)_r) = \ln \sum_{(y,h)_p \setminus (y,h)_r} \exp\left(\tilde{\phi}_{(x,y),r}((y,h)_r) - \sum_{p' \in P(p)} \lambda_{(x,y),p \to p'}((y,h)_{p'}) + \sum_{r' \in C(p) \setminus r} \lambda_{(x,y),r' \to p}((y,h)_{r'})\right) \\ \lambda_{(x,y),r \to p}((y,h)_r) \propto \frac{1}{1 + |P(r)|} \left(\hat{\phi}_{(x,y),r}((y,h)_r) + \sum_{p' \in P(r)} \mu_{(x,y),p' \to r}((y,h)_r)\right) - \mu_{(x,y),p \to r}((y,h)_r)$$

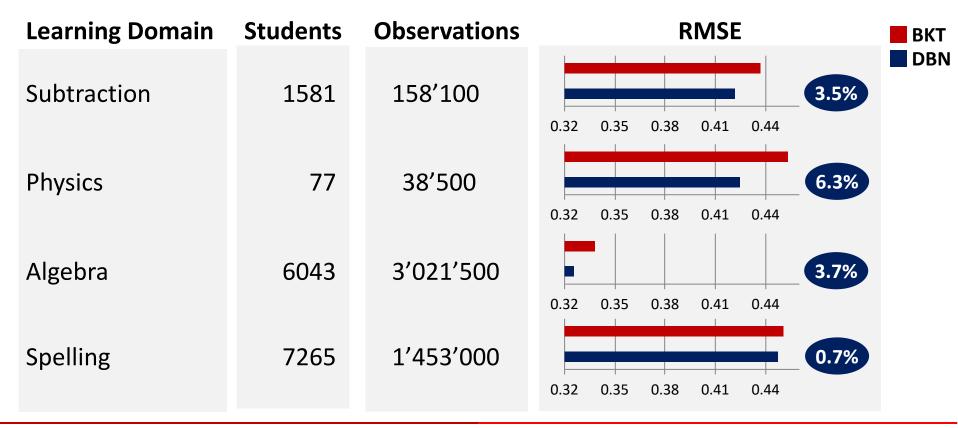
2. Perform a gradient step and project the result onto the constraint set C:

$$w \leftarrow P_{\mathcal{C}}[w - \gamma \nabla_w f(\lambda, w)]$$





DBNs outperform BKT in different learning domains



[Käser et al., ITS 2014; Käser et al., IEEE TLT 2017]