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Human teachers individualize learning
Knowledge

Strategies

Preferences

Misconceptions

Engagement
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Inferring knowledge based on student answers
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Subtraction 0-10
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Bayesian Knowledge Tracing (BKT)

0 1010 1 ?

Subtraction 0-10
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BKT models are simple, efficient, and interpretable
Bayesian Knowledge Tracing (BKT)

𝜃 = 𝑝$, 𝑝&, 𝑝', 𝑝(, 𝑝)

Probability of slipping or guessing

Probability of learning or forgetting

Observed variable

Latent variable



… but they have limited representational power
Bayesian Knowledge Tracing (BKT)



Dynamic Bayesian Networks (DBN)Bayesian Knowledge Tracing (BKT)

DBNs can model interactions between variables

t = 1 t = 2

s2

s1

s3

s2

s1

s3



Example: DBN representing mathematical skills

[Käser et al., Frontiers 2013; Käser et al., AISTATS 2014]



Subtraction 1581 158’100
0.32 0.35 0.38 0.41 0.44

3.5%

Physics 77 38’500
0.32 0.35 0.38 0.41 0.44

6.3%

Algebra 6043 3’021’500
0.32 0.35 0.38 0.41 0.44

3.7%

Learning Domain Students Observations RMSE

BKT

DBN

DBNs outperform BKT in different learning domains

[Käser et al., ITS 2014; Käser et al., IEEE TLT 2017]



Deep Knowledge Tracing

h1 h2 hTh0

x1 x2 xT

y1 y2 yT

[Piech et al., NIPS 2015]



Hidden layer captures relevant information

h1 h2 hTh0

x1 x2 xT

y1 y2 yT

Hidden Layer

[Piech et al., NIPS 2015]
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Output layer consists of predicted probabilities
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Deep Knowledge Tracing outperforms BKT

[Piech et al., NIPS 2015; Xiong et al., EDM 2016]

Khan Academy
(Math)

47’500 1’435’000
0.6 0.65 0.7 0.75 0.8 0.85

Assistments
(Math)

19’457 707’944
0.6 0.65 0.7 0.75 0.8 0.85

KDD Cup 2010
(Algebra)

574 607’026
0.6 0.65 0.7 0.75 0.8 0.85

Data Set Students Observations AUC BKT
DKT
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Modeling and Predicting Student Knowledge

Bayesian Knowledge Tracing is simple, 
efficient, and interpretable

Deep Knowledge Tracing can learn non-linear 
relationships and implicitly captures the 
relations between the skills

Dynamic Bayesian Networks can represent 
the hierachical relations between the 
different skills
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Which team wins the tug-of-war?
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Intro
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Students can freely choose between two modes
Challenge ModeIntro

Exploration Mode

8 correct in a row

Posttest

correct

Choose 
Winner

wrong



Students can be divided into six different clusters

US School 1: 127 students



The best students explore systematically

Systematic Inquiry

US School 1: 127 students



Persistent inquiry alone is not enough

Random Exploration

US School 1: 127 students



Many students just try to beat the game

Trial-and-Error

US School 1: 127 students



Adaptation based on students’ learning 
behavior

Targeted 
Intervention

Systematic Inquiry

Random Exploration
Trial-and-Error



Exploring the use of recurrent neural networks

Targeted 
Intervention

Online Classification

Recurrent Neural 
Networks

Systematic Inquiry

Trial-and-Error
Random Exploration



LSTMs are similar or better at important levels
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[Käser & Schwartz, EDM 2019]



Modeling and Individualizing Learning in 
Computer-Based Environments

Detecting & classifying 
learner choices 
and strategies

How?

Improving predictions 
of knowledge

What?

Knowledge

Engagement

MisconceptionsStrategies

Preferences



Questions?

tanja.kaeser@sdsc.ethz.ch
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Description of US data sets

US School 1 US School 2

Number of students 127 165

Age 8th grade 8th grade

Time in exploration mode 42% 23%

Students passing the game 87% 97%

Students with perfect post-test 24% 34%

Average post-test score 2.1 2.6



Posttest
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Clustering students based on features describing 
their exploration behavior
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Clustering students based on features describing 
their exploration behavior

Number of challenge questions answered until passing a level (NC)
Number of explored set-ups until passing a level (NS)
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Clustering students based on features describing 
their exploration behavior

Number of challenge questions answered until passing a level (NC)
Number of explored set-ups until passing a level (NS)
Number of explored set-ups rated as strong until passing a level (NSS)

St
ro

ng

Large = 3*Small



The cluster solution was replicated on a second 
independent data set

US School 1 US School 2: 165 students

Systematic Inquiry

Trial-and-Error Random Exploration

Medium SES High SES

[Käser & Schwartz, IJAIED (under review)]

US School 1: 127 students



More students explore systematically
US School 1 US School 2

Systematic Inquiry

Medium SES High SES

[Käser & Schwartz, IJAIED (under review)]

US School 2: 165 studentsUS School 1: 127 students



Exploring students’ inquiry strategies across 
cultural context

US School 1 US School 2 Colombian Schools: 349 students

Systematic Inquiry

Medium SES High SES Low-Medium SES
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Exploring students’ inquiry strategies across 
cultural context

US School 1 US School 2

Trial-and-Error

Medium SES High SES Low-Medium SES

Colombian SchoolsColombian Schools: 349 studentsUS School 2: 165 studentsUS School 1: 127 students



Clusters can be semantically interpreted

Systematic Inquiry

Trial-and-Error Random Exploration

Medium SES

US School 1: 127 students

Mix between systematic 
inquiry and trial-and-error

Slow trial-and-error

Very slow trial-and-error



Pairwise Clustering
Constant shift embedding transformation 

k-Means Clustering

similarities = distances in higher-
dimensional Euclidean space



Computation of BIC

• L = likelihood of data
• Fit Gaussian distribution per cluster
• Estimate variance by distance to cluster centroid
• Estimate mean by cluster centroid
• Sum up gaussians over all clusters, taking into account the 

cluster probability
• k = number of clusters
• n = number of effective dimensions of transformation matrix

𝐵𝐼𝐶 = −2 / log 𝐿 + 𝑘 / log 𝑛 + 𝑘 − 1 + 1



Likelihood Computation

• Variance 𝝈𝟐: 𝟏
𝑹<𝒌

/ ∑𝒊(𝒙𝒊−𝒄𝒄)𝟐

– R: Sample size
– k: Number of clusters
– cc: Centroid of according cluster

• Lc = 𝟏
𝒑𝒄
/ ∑ 𝟏

𝟐𝝅𝝈𝟐
/ 𝒆(

𝒙𝒊G𝒄𝒄
𝝈 )𝟐

– pc: Prior probability for cluster



• US School 1: Original data set
• US School 2: New data set
• Cluster US School 1 -> Original clustering solution (OC)
• k-Nearest Neighbor assigns each sample from school 2 to a 

cluster c of OC -> vector of predicted labels lp
• Cluster US School 2 -> New clustering solution with labels lNC

• Cluster stability = Hamming distance between lp and lNC

Cluster Stability

[Lange et al., Neural Comput. 2004]



Exploring the use of recurrent neural networks
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Output layer consist of predicted probabilities

Output Layer
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Model outputs a probability at each time step

Model (Seq)
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.02 

.25 

.17

.52

.01

.03

.03 

.10 

.11

.65

.03

.08

.00 

.01 

.04

.89

.04

.01

Cluster Label

Input Layer

Hidden Layer(s)

0
1
0

0
2
1

26
12
5

#C
#E

#SE

0
1
2
3
4
5



Model outputs a probability at the end

Model (End)
Output Layer

.00 

.01 

.04

.89

.04

.01

Input Layer

Hidden Layer(s)

0
1
0

0
2
1

26
12
5

#C
#E

#SE



Hidden layer captures relevant information

Output Layer
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Number of hidden layers and cells per layer vary
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Architecture of cells varies

Gated Recurrent Unit (GRU)
Long Short Term Memory (LSTM)
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Parameter learning is computationally intractable
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Parameter constraints guarantee interpretability
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Student

Parameter constraints guarantee interpretability

𝑚 = 1

Student
𝑚 = 𝑀

min
]

−^
_

ln ^
`a

𝑝 𝑦_, ℎ_ 𝜃 𝒔. 𝒕. 𝜽 ∈ 𝑪 pk < 0.3

Probability of guessing

𝜃 = 𝑝W, 𝑝X, … , 𝑝Z

[Käser et al., AISTATS 2014]



From probabilistic notation to log-linear formulation

𝐿 𝑤 =^
_
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`a

𝑒𝑥𝑝 𝒘t𝜙 𝑦_, ℎ,_ − ln(𝑍)

𝐿 𝜃 =^
_

ln ^
`a

𝑝 𝑦_, ℎ_ 𝜃

[Käser et al., AISTATS 2014]



From probabilistic notation to log-linear formulation

𝐿 𝑤 =^
_

𝑙𝑛 ^
`a

𝑒𝑥𝑝 𝒘t𝜙 𝑦_, ℎ,_ − ln(𝑍)

𝐿 𝜃 =^
_

ln ^
`a

𝑝 𝑦_, ℎ_ 𝜃

𝜙 = 1 − 2𝑣, 𝑉 ∈ 𝑌 ∪ 𝐻

[Käser et al., AISTATS 2014]



Constrained structured prediction with latent variables

Until ConvergenceLatent variable prediction

E

Structured prediction with 
constrained parameter spaces

M



[Schwing et al., ICML 2012]

Constrained structured prediction with latent variables

Until ConvergenceLatent variable prediction

E

Structured prediction with 
constrained parameter spaces

M

Message Passing



Constrained structured prediction with latent variables

Until ConvergenceLatent variable prediction

E

Structured prediction with 
constrained parameter spaces

M

[Käser et al., AISTATS 2014]



Constrained structured prediction with latent variables

Until ConvergenceLatent variable prediction

E

Structured prediction with 
constrained parameter spaces

M

Update Lagrange 
multipliers

[Käser et al., AISTATS 2014]



Constrained structured prediction with latent variables

Until ConvergenceLatent variable prediction

E

Structured prediction with 
constrained parameter spaces

M
• Gradient step
• Project result 

back onto 
constraint set C

[Käser et al., AISTATS 2014]



Subtraction 1581 158’100
0.32 0.35 0.38 0.41 0.44

3.5%

Physics 77 38’500
0.32 0.35 0.38 0.41 0.44

6.3%

Algebra 6043 3’021’500
0.32 0.35 0.38 0.41 0.44

3.7%

Spelling 7265 1’453’000
0.32 0.35 0.38 0.41 0.44

0.7%

Learning Domain Students Observations RMSE

DBNs outperform BKT in different learning domains
BKT
DBN

[Käser et al., ITS 2014; Käser et al., IEEE TLT 2017]


