Modeling and Individualizing Learning in Computer-Based Environments

Tanja Käser
January 2020

Human teachers individualize learning

Student models enable individualization

Interaction

- Key stroke
- Mouse Click
- Speech
- Video

Student models enable individualization

Student models enable individualization

Student models enable individualization

Modeling and Individualizing Learning in Computer-Based Environments

Modeling and Individualizing Learning in Computer-Based Environments

Detecting learner choices and strategies

How?

Modeling and Individualizing Learning in Computer-Based Environments

Detecting learner choices
 and strategies

How?

Inferring knowledge based on student answers

Subtraction 0-10

Inferring knowledge based on student answers

Subtraction 0-10

Bayesian Knowledge Tracing (BKT)

Latent variable
Subtraction 0-10 \square Observed variable

BKT models are simple, efficient, and interpretable

Bayesian Knowledge Tracing (BKT)

BKT models are simple, efficient, and interpretable

Bayesian Knowledge Tracing (BKT)

BKT models are simple, efficient, and interpretable

Bayesian Knowledge Tracing (BKT)

... but they have limited representational power

Bayesian Knowledge Tracing (BKT)

DBNs can model interactions between variables

Bayesian Knowledge Tracing (BKT)

Dynamic Bayesian Networks (DBN)

$$
t=1
$$

$$
t=2
$$

Example: DBN representing mathematical skills

[Käser et al., Frontiers 2013; Käser et al., AISTATS 2014]

DBNs outperform BKT in different learning domains

Deep Knowledge Tracing

Hidden layer captures relevant information

Hidden Layer

Input layer represents observations

[Piech et al., NIPS 2015]

Output layer consists of predicted probabilities

[Piech et al., NIPS 2015]

Deep Knowledge Tracing outperforms BKT

Data Set	Students	Observations	AUC					
Khan Academy (Math)	47'500	1'435'000						
			0.6	0.65	0.7	0.75	0.8	0.85
Assistments (Math)	19'457	707'944						
			0.6	0.65	0.7	0.75	0.8	0.85
KDD Cup 2010	574	607’026						
(Algebra)								

Modeling and Predicting Student Knowledge

Bayesian Knowledge Tracing is simple, efficient, and interpretable

Modeling and Predicting Student Knowledge

Bayesian Knowledge Tracing is simple, efficient, and interpretable
Dynamic Bayesian Networks can represent the hierachical relations between the different skills

Modeling and Predicting Student Knowledge

Bayesian Knowledge Tracing is simple, efficient, and interpretable

Dynamic Bayesian Networks can represent the hierachical relations between the different skills

Deep Knowledge Tracing can learn non-linear relationships and implicitly captures the relations between the skills

Modeling and Individualizing Learning in Computer-Based Environments

Detecting learner choices and strategies

How?

Which team wins the tug-of-war?

Students can freely choose between two modes

Intro

Students can freely choose between two modes

Students can be divided into six different clusters

US School 1: 127 students

The best students explore systematically

Persistent inquiry alone is not enough

Many students just try to beat the game

US School 1: 127 students

Adaptation based on students' learning behavior

Exploring the use of recurrent neural networks

LSTMs are similar or better at important levels

Modeling and Individualizing Learning in Computer-Based Environments

Questions?

tanja.kaeser@sdsc.ethz.ch

References

1) Corbett, A. T., and Anderson, J. R. (1995). Knowledge tracing: Modeling the acquisition of procedural knowledge. User Modeling and User-Adapted Interaction
2) Yudelson, M.V., Koedinger, K.R., and Gordon, G.J. (2013). Individualized bayesian knowledge tracing models. Proceedings of AIED
3) Käser, T., Baschera, G., Kohn, J., Kucian, K. , Richtmann, V., Grond, U., Gross, M., and von Aster, M. (2013). Design and evaluation of the computer-based training program Calcularis for enhancing numerical cognition. Frontiers in Psychology
4) Käser, T., Klingler, S., Schwing, A., and Gross, M. (2014). Computational Education using Latent Structured Prediction. Proceedings of AISTATS
5) Käser, T., Klingler, S., Schwing, A., and Gross, M. (2014). Beyond KnowledgeTracing: Modeling Skill Topologies with Bayesian Networks. Proceedings of ITS
6) Piech, C., Bassen, J., Huang, J., Ganguli, S., Sahami, M., Guibas, L., and Sohl-Dickstein, J. (2015). Deep Knowledge Tracing. Proceedings of NIPS
7) Xiong, X., Zhao, S., Van Inwegen, E. G., Beck, J. E. (2016). Going Deeper with Deep Knowledge Tracing. Proceedings of EDM
8) Käser, T., Klingler, S., Schwing, A., and Gross, M. (2017). Dynamic Bayesian Networks for Student Modeling. IEEE Transactions on Learning Technologies
9) Käser, T., and Schwartz, D. L. (2019). Exploring Neural Network Models for the Classification of Students in Highly Interactive Environments. Proceedings of EDM

BACKUP

Description of US data sets

	US School 1	US School 2
Number of students	127	165
Age	$8^{\text {th }}$ grade	$8^{\text {th }}$ grade
Time in exploration mode	42%	23%
Students passing the game	87%	97%
Students with perfect post-test	24%	34%
Average post-test score	2.1	2.6

Posttest

Clustering students based on features describing their exploration behavior

\Rightarrow Number of challenge questions answered until passing a level (NC)

Clustering students based on features describing their exploration behavior

\Rightarrow Number of challenge questions answered until passing a level (NC)
\Rightarrow Number of explored set-ups until passing a level (NS)

Clustering students based on features describing their exploration behavior

\Rightarrow Number of challenge questions answered until passing a level (NC)
\Rightarrow Number of explored set-ups until passing a level (NS)
\Rightarrow Number of explored set-ups rated as strong until passing a level (NSS)


```
Large = 3*Small
```


The cluster solution was replicated on a second independent data set

US School 1: 127 students
US School 2: 165 students

More students explore systematically

Medium SES

US School 2: 165 students

High SES

Exploring students' inquiry strategies across cultural context

Medium SES

US School 2: 165 students
Colombian Schools: 349 students

High SES

Exploring students' inquiry strategies across cultural context

US School 1: 127 students

Medium SES

US School 2: 165 students

High SES

Colombian Schools: 349 students

Low-Medium SES

Clusters can be semantically interpreted

US School 1: 127 students

Pairwise Clustering

Constant shift embedding transformation

> similarities = distances in higherdimensional Euclidean space

k-Means Clustering

Computation of BIC

$$
B I C=-2 \cdot \log (L)+k \cdot \log (n)+(k-1)+1
$$

- L = likelihood of data
- Fit Gaussian distribution per cluster
- Estimate variance by distance to cluster centroid
- Estimate mean by cluster centroid
- Sum up gaussians over all clusters, taking into account the cluster probability
- $k=$ number of clusters
- $\mathrm{n}=$ number of effective dimensions of transformation matrix

Likelihood Computation

- Variance $\sigma^{2}: \frac{1}{R-k} \cdot \sum_{i}\left(\boldsymbol{x}_{\boldsymbol{i}}-\boldsymbol{c c}\right)^{2}$
- R: Sample size
- k: Number of clusters
- cc: Centroid of according cluster
- $\mathrm{L}_{\mathrm{c}}=\frac{1}{\boldsymbol{p}_{\boldsymbol{c}}} \cdot \sum \frac{1}{\sqrt{2 \pi \sigma^{2}}} \cdot e^{\left(\frac{x_{i-c c}}{\sigma}\right)^{2}}$
- p_{c} : Prior probability for cluster

Cluster Stability

- US School 1: Original data set
- US School 2: New data set
- Cluster US School 1 -> Original clustering solution (OC)
- k-Nearest Neighbor assigns each sample from school 2 to a cluster c of $O C$-> vector of predicted labels I_{p}
- Cluster US School 2 -> New clustering solution with labels I_{Nc}
- Cluster stability $=$ Hamming distance between I_{p} and $I_{N C}$

Exploring the use of recurrent neural networks

Exploring the use of recurrent neural networks

Output layer consist of predicted probabilities

Model outputs a probability at each time step

Model outputs a probability at the end

Hidden layer captures relevant information

Number of hidden layers and cells per layer vary

Number of hidden layers and cells per layer vary

Architecture of cells varies

Gated Recurrent Unit (GRU) Long Short Term Memory (LSTM)

Parameter learning is computationally intractable

Student

$m=1$

$:$

Student $m=M$

Parameter learning is computationally intractable

Student

$m=1$

$:$

Student $m=M$

$$
\Rightarrow \min _{\theta}-\sum_{m} \ln \left(\sum_{h_{m}} p\left(y_{m}, h_{m} \mid \theta\right)\right)
$$

Parameter constraints guarantee interpretability

Student
 $m=1$
 Student

 $m=M$

$$
\Rightarrow \min _{\theta}-\sum_{m} \ln \left(\sum_{h_{m}} p\left(y_{m}, h_{m} \mid \theta\right)\right)
$$

Parameter constraints guarantee interpretability

From probabilistic notation to log-linear formulation

$$
L(\theta)=\sum_{m} \ln \left(\sum_{h_{m}} p\left(y_{m}, h_{m} \mid \theta\right)\right)
$$

$$
L(w)=\sum_{m} \ln \left(\sum_{h_{m}} \exp \left(\boldsymbol{w}^{T} \phi\left(y_{m}, h_{m}\right)-\ln (Z)\right)\right)
$$

From probabilistic notation to log-linear formulation

$$
\begin{gathered}
L(\theta)=\sum_{m} \ln \left(\sum_{h_{m}} p\left(y_{m}, h_{m} \mid \theta\right)\right) \\
L(w)=\sum_{m} \ln \left(\sum_{h_{m}} \exp \left(w^{T} \phi\left(y_{m}, h_{m}\right)-\ln (Z)\right)\right)
\end{gathered}
$$

Constrained structured prediction with latent variables

Constrained structured prediction with latent variables

Constrained structured prediction with latent variables

[Käser et al., AISTATS 2014]

Constrained structured prediction with latent variables

[Käser et al., AISTATS 2014]

Constrained structured prediction with latent variables

[Käser et al., AISTATS 2014]

DBNs outperform BKT in different learning domains

Learning Domain	Students	Observations				RMSE			$\begin{aligned} & \text { ■KT } \\ & \text { DBN } \end{aligned}$	
Subtraction	1581	158'100						3.5\%		
			0.3	0.3	0.38	0.41	0.4			
Physics	77	$38^{\prime} 500$						6.3\%		
			0.3	0.3	0.38	0.41	0.44			
Algebra	6043	3'021'500	I					3.7\%		
			0.3	0.3	0.38	0.41	0.44			
Spelling	7265	1'453'000						0.7%		
			0.3	0.3	0.38	0.41	0.4			

