TRAFPC.4CAST

Measuring Traffic through Sparse and Partially Biased Observations: Learnings from Floating Car Data

Moritz Neun, Christian Eichenberger

institute of advanced research in artificial intelligence

Overview

- Traffic4cast Data and Prediction Task
- Traffic4cast 2021: Tackling Domain Shift
- Big Picture: Spatio-Temporal Grid as General Framework towards Traffic Simulation
- Predicting Speeds from Sparse Loop Counter Data

Why traffic4cast?

Data driven traffic modelling

- Humans can "see" traffic from coarse data
 - \rightarrow Leverage recent deep learning advances
- Model traffic understanding in "purely data-driven" way
 - \rightarrow Benefit from industry-scale dataset derived from GPS (provided by HERE Technologies)

|ARA|

What does traffic4cast leverage?

Working towards a learned "digital twin" of city traffic

- 1. Modelling traffic evolution
 - a. Traffic now-casting / short term prediction (aka "a better traffic map")
 - b. Transferability of learned geo-spatial processes (see also Weather4cast)
- 2. Unblocking and liberating traffic based services
 - a. Usage of alternative data sources
 - b. Fast, cheap and accurate prediction of travel times (ETA) for fleet and delivery
 - c. Traffic prediction for specific transport modes (e.g. 2-wheeler or trucks)
- 3. City and traffic planning
 - a. Learned digital twin also encodes traffic rules an expert would not know of (bias)
 - b. "multi-modal" in the sense that it just depends on the data (moving entities)

Traffic Data Sources

Category	Source	Data	Spatial res.	Spatial cov.	Temp. res.	Temp. cov.	Bias
Floating Car/Vehicle Data (FCV/FVD)	GPS probes	density/flow/speed	High to Mid (5-100m)	Full (apart from tunnels?)	High to Mid (1-5min)	Full	Fleets (delivery, working hours, loading / hop-off)
	Mobile Phone	general density / flow	Low (100m-2km)	Full	High	Full	
Stationary Sensors	Loop-counters and other sensors	density/flow/speed	High	Sparse (100-4K / city)	High to Mid (1-60min)	Full	-
	Traffic cameras	density/flow/speed	High	Sparse	High	Full	-
	Pollution sensors	proxy for density					
Overhead	Satellite imagery	density/flow/speed	High (1m) to Mid (100m)	Inverse corr. temp. cov.	Low	Low (max every 4h)	-
	UAV / Drones	density/flow/speed	High (0.1-1m)	Sparse	High	Sparse	-
	Radar	density/flow/speed	High (25cm)	Inverse corr. temp. cov.	Low	Low (max every 4h)	-
	Geo-stationary satellites	RGB/IR, proxy for density	Low (500m-2km)	Full?	Mid (~2min)	Full	-
Synthetic	Simulators	All	High	Full	High	Full	Synthetic (Imitiation Learning / PoC)
ARAL	Source: own, unpublis	hed.	-	-	-		5

Traffic4cast Data and Prediction Task

- GPS Probe data (provided by HERE Technologies)
- Aggregated into Traffic Map Movies (288 frames per day, volume and speed per main heading)

Source: Neun, Eichenberger et al. T4c at NeurIPS 2021 Competition Design and Data – Supplementary Reference Material. arXiv 2022, forthc.

Traffic Map Movie

Traffic4cast 2021: Tackling Domain Shifts

¹Given one hour of data in 12 slots of 5min, predict the next 5, 10, 15, 30, 45 and 60 lead times.

INRAI

Source: Eichenberger, Neun et al. Proceedings of the NeurIPS 2021 Competition Track. PMLR, 2022 (forthcoming).

11

Core Challenge: Robustness during Paradigm Change

Source: Neun, Eichenberger et al. T4c at NeurIPS 2021 Competition Design and Data – Supplementary Reference Material. arXiv 2022, forthc.

Figure 2: Inference oahciy (Lu, 2021) (left: core competition, right: extended competition).

IARAI

Strategies for Temporal and Spatio-Temporal Domain-Shift

Team, rank (core/ext), approach	road graph, time-of-day,	$\begin{array}{c} \text{models} \\ \text{trained} \\ \end{array}$		Training datasets ^d	$\sum \#$ params core / ext e	mask^{f}
	day-of-week ^a	p. city				
oahciy $(1/2)$	road graph	no	9 / 7	$(9/7) \times \{T^*, C^*\}$	1710.2M /	1
U-Net + multi-task learning	(concat)				17.1M	
(Lu, 2021)						
sungbin $(2/1)$	road graph	in two	16/4	$2 \times \{C[1-4]\}; \{T1, C[1-4]\}$	123.6M /	
U-Net Ensemble (Choi,	(concat)	U-Nets		$[4]; 4 \times \{T^*, C^*\} / 4 \times$	33.9M	
2021)				{T*,C*}		
sevakon $(3/-)$	no	yes	11/-	$3 \times \{C1\}; 2 \times \{C2\};$	342.0M / -	city
U-Net with Temporal				$3 \times \{C3\}; 3 \times \{C4\}$		(train/
Domain Adaptation						test
(Konyakhin et al., 2021)						data)
nina (6/3)	no	no	1=1	${T^*,C^*}$	36.7M /	
U-Net++ on patches					36.7M	
(Wiedemann and Raubal,						
2021)						
ai $4ex (4/6)$	no	no	1 = 1	$\{C^*\}$	141.9M /	
SWIN-Transformer (Boje-					141.9M	
somo et al., 2021)						
dninja (7/4)	road graph,	no	1=1	${T^{*},C^{*}}$	5.8M / 5.8M	by
Graph-based U-Net (Her-	time-of-day,					GNN
mes et al., 2022)	day-of-week					
resuly $(5/-)$	road graph	no	1/1	$\{T^*, C^*\}$	17.3M / 43k	test
3DResNet, Sparse-UNet			1.82			(test
(Wang et al., 2021a)						data)
jaysantokhi (8/5)	no	after	4/4	${T^*,C[1-4]}$	1.0M / 0.3M	city
Dual-Encoding U-Net (San-		pre-				(test
tokhi et al., 2021)		training				data)

IARAI

100

Where was the Competition Won?

IARA |

452 BERLIN #6 speed std 35 55 452 BERLIN #7 speed std 105 125

Where was the Competition won?

IARA |

Figure 18: Locations (red) of the 35–55 (left) and 105–125 (right) speed std bands

Big Picture: Spatio-Temporal Grid as General Framework towards Traffic Simulation

Traffic Data Sources

Category	Source	Data	Spatial res.	Spatial cov.	Temp. res.	Temp. cov.	Bias
Floating Car/Vehicle Data (FCV/FVD)	GPS probes	density/flow/speed	High to Mid (5-100m)	Full (apart from tunnels?)	High to Mid (1-5min)	Full	Fleets (delivery, working hours, loading / hop-off)
	Mobile Phone	general density / flow	Low (100m-2km)	Full	High	Full	
Stationary Sensors	Loop-counters and other sensors	density/flow/speed	High	Sparse (100-4K / city)	High to Mid (1-60min)	Full	-
	Traffic cameras	density/flow/speed	High	Sparse	High	Full	-
	Pollution sensors	proxy for density					
Overhead	Satellite imagery	density/flow/speed	High (1m) to Mid (100m)	Inverse corr. temp. cov.	Low	Low (max every 4h)	-
	UAV / Drones	density/flow/speed	High (0.1-1m)	Sparse	High	Sparse	-
	Radar	density/flow/speed	High (25cm)	Inverse corr. temp. cov.	Low	Low (max every 4h)	-
	Geo-stationary satellites	RGB/IR, proxy for density	Low (500m-2km)	Full?	Mid (~2min)	Full	-
Synthetic	Simulators	All	High	Full	High	Full	Synthetic (Imitiation Learning / PoC)
ARAI	Source: own, unpublis	hed.	-	-	*	-	18

Satellite or UAV counts \rightarrow temporally sparse

Probe movies \rightarrow volume sparse

Loop counter or camera \rightarrow spatially sparse

"Completion game" combining traffic state information from satellite/UAV, loop-counter and floating vehicle data

Satellite or UAV counts (100% volume, 3h temporal, 99% spatial cells)

Probe movies (0.1-2% volume, 5min temporal, 99% spatial cells)

Loop counter or camera (100% volume, 10min--1h temporal, 0.1% spatial cells)

- Cross-process: o traffic counters ∘ satellite…
- Domain stats
 - speed distribution
 - traffic state
 - classification?
 - o mode shares?
 - ETAs?
 - trip-based
 - distributions?

Standard catalogue like https://www.climdex.org/learn/indices/ for climate research?

Predicting Speed from Sparse Loop Counter Data

Loop Counter Data Traffic sensors in roads

Typical sensor placement (Zurich)

Source: City of Zurich.

Distribution of a large sensor network (London)

Loop Counter Data

From sparse but real-time traffic counts to a full speed prediction

Loop Counter Data From sparse but real-time traffic counts to a full speed prediction

TRAFFIC.4CAST

Thank you! Questions?

Web: <u>traffic4cast.org</u> Email: <u>traffic4cast@iarai.ac.at</u>

institute of advanced research in artificial intelligence