

# **Enhancing human learning via spaced repetition optimization**

#### **Manuel Gomez Rodriguez**

**Max Planck Institute for Software Systems** 

Includes joint work with Behzad Tabibian, Utkarsh Upadhyay, Abir De, Ali Zarezade and Bernhard Schölkopf



#### **Machine learning for automation**

# Machine learning has learned to perform a variety of tasks as well as humans, if not better!







play complex games

#### **Human-centered machine learning**

Rather than learning to perform tasks, what about using machine learning to help humans learn better?



Machine learning translate between Spanish and English



Machine learning helps humans learn Spanish

#### **Human-centered machine learning**

Rather than learning to perform tasks, what about using machine learning to help humans learn better?



Machine learning translate between Spanish and English



### What is learning? Declarative vs procedural learning

#### **Declarative learning**

Acquiring information that one can speak about



Learning a new language's vocabulary

#### **Procedural learning**

Acquiring mainly motor skills and habits



Learning how to ride a bike

### What is learning? Declarative vs procedural learning

#### **Declarative learning**

Acquiring information that one can speak about



Learning a new language's vocabulary

#### **Procedural learning**

Acquiring mainly motor skills and habits



Learning how to ride a bike

# Learning by (spaced) repetition

# Humans learn by repetition



### Learning by (spaced) repetition

Humans learn by repetition



Since more than a century [Ebbinghaus, 1885], it is known that "spaced" repetition is important



#### Leitner system for flash cards

#### Leitner system for flash cards

[Leitner, 1974]



Incorrect recalls

#### The promise of modern online learning platforms

# Use fine-grained monitoring & greater degree of control to optimize when to review





### Can we predict when a learner will recall (or forget)?



# Can we predict when a learner will recall (or forget)?



### A machine learning memory model

Given enough historical ( , "pantalón") learning data: ( , "jersey")



We can use a variant of **half-life regression** [Settles & Meeder, 2016] to fit the model parameters, i.e.,

One difficulty parameter  $n_i(0)$  per item i Single set of parameters for  $\alpha$  and  $\beta$  for all items

# A machine learning memory model



#### Reviewing rates to decide when to review

**Instead** of **optimizing** for the **exact reviewing time**, we will **optimize** for the **optimal** *rate of reviewing* 



#### Reviewing rates to decide when to review

**Instead** of **optimizing** for the **exact reviewing time**, we will **optimize** for the **optimal** *rate of reviewing* 



Under this view, we can express the memory model and rate of reviewing as a dynamical system

# Finding the optimal reviewing rates

# Goal: optimally trade off recall and reviewing rate for all items over time, i.e., minimizing the loss

Parameter that controls trade off

$$\ell(m(t), u(t)) = \frac{1}{2} \sum_{i \in \mathcal{I}} (1 - \underbrace{m_i(t)}_{\text{Recall probability}})^2 + \frac{1}{2} \sum_{i \in \mathcal{I}} \underbrace{q_i \underbrace{u_i^2(t)}_{\text{Reviewing rate}}}_{\text{rate}}$$

# Finding the optimal reviewing rates

Goal: optimally trade off recall and reviewing rate for all items over time, i.e., minimizing the loss

Parameter that controls trade off

$$\ell(m(t),u(t)) = \frac{1}{2} \sum_{i \in \mathcal{I}} (1 - \underbrace{m_i(t)}_{\text{Recall}})^2 + \frac{1}{2} \sum_{i \in \mathcal{I}} \underbrace{\frac{1}{q_i} \underbrace{u_i^2(t)}_{\text{Reviewing probability}}}_{\text{rate}}$$

We can use stochastic optimal control to show that the optimal reviewing rate per item is:  $u_i^*(t) = q_i^{-1/2}(1 - m_i(t))$ 

# The Memorize algorithm



# The Memorize algorithm



# The Memorize algorithm



# **Experiments on Duolingo**

Natural experiment using data from Duolingo, a popular language-learning online platform:



In each session, a learner answers multiple questions with multiple words



# **Experiments on Duolingo**

Natural experiment using data from Duolingo, a popular language-learning online platform:

**⇒** 12 million study sessions during 2 weeks

In each session, a learner answers multiple questions with multiple words

**⇒** 5.3 million unique (user, word) pairs



 $r_i(t) = 1 \implies$  Successful recall: The learner answered all the questions containing "pantalón" correctly

 $r_i(t) = 0 \implies$  Unsuccessful recall: >= 1 question wrong with "pantalón"

#### How do we compare different reviewing algorithms?

(1) We group (user, word) pairs by their number of reviews n and their training period  $T = t_{n-1} - t_1$ 



Key idea

First n-1 reviews as study and last review n as test

#### How do we compare different reviewing algorithms?

(2) For each recall pattern, we pick top
25% pairs in terms of log-likelihood
for all reviewing methods



### How do we compare different reviewing algorithms?

(2) For each recall pattern, we pick top 25% pairs in terms of log-likelihood for all reviewing methods



(3) For each pair, we compute an empirical estimate of the forgetting rate using only the last study session and the retention interval  $t_n - t_{n-1}$ 



### Performance vs study duration and # of reviews

Lower empirical forgetting rate is better





MEMORIZE offers a clear competitive advantage with respect to the uniform and the threshold-based baselines

# Can we tell something about a specific learner?



Whenever a specific learner follows Memorize more closely, her performance is superior

# More on optimizing spaced repetition

#### Beyond quadratic losses and parametric memory

models Approach based on deep RL [Upadhyay et al., NeurIPS 2018]



From spaced repetition to spaced selection

Learner chooses time of review, we optimize items per session [Hunziker et al., NeurIPS 2019]





#### What's next?

**Interventional experiments** on **apps** for **personalized learning** developed by

swift.ch



| In progress:                    | Vari     | iant                         | Improvement ①           | Probability to beat baseline | Probability to be best variant |
|---------------------------------|----------|------------------------------|-------------------------|------------------------------|--------------------------------|
| Random                          | <b>✓</b> | Control group<br>7,068 users | Baseline                | Baseline                     | <0.1%                          |
| Previous (non-ML) algorithm ——  | <b>✓</b> | Variant A<br>3,902 users     | 60.4%<br>50.8% to 70.6% | >99.9%                       | 16%                            |
| Our algorithm $\longrightarrow$ | V        | Variant B<br>3,932 users     | 65.3%<br>55.5% to 75.7% | >99.9%                       | 84%                            |

#### Thanks!

# For more details, have a look at our paper at PNAS, 2019

#### RESEARCH ARTICLE



# Enhancing human learning via spaced repetition optimization

Behzad Tabibian, Utkarsh Upadhyay, Abir De, <sup>10</sup> Ali Zarezade, Bernhard Schölkopf, and Manuel Gomez-Rodriguez

PNAS March 5, 2019 116 (10) 3988-3993; first published January 22, 2019 https://doi.org/10.1073/pnas.1815156116

Edited by Richard M. Shiffrin, Indiana University, Bloomington, IN, and approved December 14, 2018 (received for review September 3, 2018)

# and code github.com/Networks-Learning/memorize