ETHzürich

Predicting Time-to-Green for Fullyactuated Signal Control Systems with Deep Learning Models

Alexander Genser

AMLD EPFL 2022
29 March 2022, Lausanne

MOTIVATION

Motivation - Time-2-Green countdowns

- Red and green phases dependent on traffic demand and public transportation

Oft unregelmässig lange Rotphasen

In der Schweiz hatte es 2015 einen Vorstoss auf Bundesebene für «Countdown-Ampeln» landesweit gegeben. Die Forderung der Berner SP-Nationalrätin Margret Kiener Nellen wurde vom Bundesrat abgewiesen. Die Landesregierung begründete ihre Haltung unter anderem damit, dass sich Rot- und Grünphasen von Ampeln oft nach dem Verkehrsaufkommen sowie dem öffentlichen Nahverkehr richten und somit die Rotphasen unterschiedlich lang sein würden.

Source: nau.ch, 2020.

Source: rp-online.de, 2019.

Motivation - Speed advisory systems

- Enhancement of Signal Phase and Timing (SPaT) messages
- Beneficial for speed advisory systems
- Efficient and environmental friendly motion planning (homogeneous speed profiles)
- Requirement - Robust prediction of Time to Green (T2G)

PROBLEM DEFINITION

State-of-the-art signal control systems

- Types of signal control systems
- Non-actuated
- Semi-actuated
- Fully-actuated
- None to fully flexible systems
for control according to traffic dynamics

Non-actuated signal control systems

- Non-actuated signal control system
- Green time $g_{i}\left(c_{i}\right)$, red time $r_{i}\left(c_{i}\right)$, cycle-time c_{i} of signal i are constant
- No reaction to traffic dynamics / public transportation

Semi-actuated signal control systems

- Semi-actuated signal control system
- Green time $g_{i}\left(c_{i}\right)$, red time $r_{i}\left(c_{i}\right)$ of signal i are non-constant
- Extension of green-time (e.g., priority for public transportation)
- T2G prediction with constraint that cycle durations are fixed

System	$r_{i}\left(c_{i}\right)$	$g_{i}\left(c_{i}\right)$	c_{i}
None	const.	const.	const.
Semi	nonconst.	nonconst.	const.
Fully	nonconst.	nonconst.	nonconst.

Fully-actuated signal control systems

- Full-actuated signal control system
- Green time $g_{i}\left(c_{i}\right)$, red time $r_{i}\left(c_{i}\right)$, cycle-time c_{i} of signal i are non-constant
- No variables have a fixed time quantity
- T2G prediction without pre-defined constraints

Problem definition

- Continuous development of traffic signal control systems
- Flexible systems through sensor technology (detectors, Bluetooth, thermal cameras, etc.)
- Optimization methods (VS-PLUS, Self-control, etc.)
- Cycle times, green or red times not constant

Pilot study in the city of Lucerne: Selfcontrol light-signal systems
16.12.2020

By: STT, City of Lucerne
Rising requirements for mobility and the environment demand new ideas, especially in regard to efficency and sustainability.

- Prediction model must capture the target's variance

The city of Lucerne has analyzed the improvement of current traffic flow using existing infrastructure. In a pilot study a brand new approach for light-signal existems has been tested. Read on a'

$$
\text { IVT, ETH, } 2020 .
$$

Problem definition

- Prediction of T2G with $f(X)$, where X contains all concatenated inputs

Problem definition

- Previous research is based on
- Vehicle trajectories (demanding data requirements)
- Considering only traffic signal data
- Fixed cycle times (semi-actuated)
- No consideration of public transportation dynamics

Prediction of Time-2-Green (T2G) for fully-actuated signal control system by utilizing detector and traffic signal data.

STUDY AREA AND DATA SET

Study area

- Intersection in the center of Zurich, CH
- Traffic modes: Individual, public transportation, pedestrians and cyclists
- Fully-actuated signal control system

Source: OpenStreetMap (2022)

Study area

- All traffic flows controlled by traffic control system
- 12 traffic lights employed (3 signals are for tram line)
- Pedestrian flows are co-regulated with individual transportation

Study area

- 12 inductive loop detectors installed
- Every arriving vehicle is detected
- Dedicated loop detectors for trams
- No separate detection of bicycle traffic

Data format and processing

- Data processing of event-based telegrams including detectors and traffic signals
- Transformation into a data set as input for machine learning
- Time series for each device
- Data resolution $=1 \mathrm{sec}$.

Feature Engineering

- Aggregated data set (cycles) of traffic signals and detectors
- Two weeks of data (Monday - Friday, 7:00 and 20:00)
- Computation of feature set ($\mathrm{R}=$ red time, $\mathrm{G}=$ green time):

Feature	Variable
Red and green time [s]	$r_{i}\left(c_{n, i}\right), g_{i}\left(c_{n, i}\right)$
Traffic flow at red and green time [veh/phase]	$q_{i, \mathrm{R}}(\cdot), q_{i, \mathrm{G}}(\cdot)$
Detector occupancy for red and green time [detections/phase]	$o_{i, \mathrm{R}}(\cdot), o_{i, \mathrm{G}}(\cdot)$
Congestion indicator [-]	$u_{i}(\cdot)$
Queue indicator [-]	$v_{i}(\cdot)$

Feature Engineering

- Long tailed features due to extreme events (high traffic demand, public transportation priority, etc.)
- Other features show similar characteristics

METHODOLOGY T2G-PREDICTION

Framework methodology

- Prediction model chosen conditional on the input percentile PCi

Framework methodology

- Prediction model chosen conditional on the input percentile PCi

Framework methodology

- Prediction model chosen conditional on the input percentile PCi

Model selection and performance metrics

- Model selection
- Multiple Linear regression (MLR)
- Random forest (RF)
- Random forest with distribution split (RFDS)
- Performance metrics
- Mean Absolute Error
- Exact hit (EH) - T2G is predicted with an error of 0 sec.
- Near misses (NM) - T2G is predicted with an error of $<1 \mathrm{sec}$.

RESULTS

Results

Multiple Linear Regression (MLR)

	MLR		
i	MAE	EH[\%]	NM[\%]
1	4.75	5.07	16.94
2	4.23	13.29	42.60
3	4.63	11.70	35.42
$\mathbf{4}$	$\mathbf{4 . 8 1}$	$\mathbf{4 . 5 7}$	$\mathbf{1 7 . 8 7}$
5	4.90	4.15	16.50
\ldots	\ldots	\ldots	\ldots
12	63.12	0.88	1.32

Signals $i=\{12\}$ are only utilized for public transport.

Results

Random Forest (RF)

	RF		
i	MAE	EH[\%]	NM[\%]
1	3.66	49.29	63.59
2	3.78	44.32	58.42
3	3.39	52.57	66.63
$\mathbf{4}$	$\mathbf{4 . 5 4}$	$\mathbf{6 . 6 0}$	$\mathbf{2 6 . 8 0}$
5	3.76	51.06	66.97
\ldots	\ldots	\ldots	\ldots
12	57.892	0.88	1.76

Signals $i=\{12\}$ are only utilized for public transport.

Results

Random Forest with distribution split (RFDS)

	RFDS		
i	MAE	EH[\%]	NM[\%]
1	3.44	50.00	66.02
2	3.50	44.02	61.56
3	3.44	50.92	64.99
$\mathbf{4}$	$\mathbf{3 . 7 9}$	$\mathbf{4 7 . 0 1}$	$\mathbf{6 2 . 8 2}$
5	4.02	47.01	62.82
\ldots	\ldots	\ldots	\ldots
12	58.32	0.88	4.41

Signals $i=\{12\}$ are only utilized for public transport.

Limitation of framework

- Model can not detect red time extensions that occur after the prediction
- Inferring this dynamic behavior can improve model robustness

CONCLUSION AND FUTURE WORK

Conclusion and future work

- Conclusion
- T2G prediction framework for e.g., SPaT message enhancement
- Capturing of non-linear relationship between traffic signal and loop detector data
- Future work
- Feature to model detections occurring after prediction
- Comparison to other machine learning candidates, e.g., XGBoost, LSTM
- Test framework on multiple intersections (various characteristics)

Thank you very much for your attention!

Alexander Genser
Doctoral assistant, Traffic Engineering Group
gensera@ethz.ch
ETH Zurich
DBAUG, IVT
HIL F 34.2

