Track / Overview

The deep learning revolution of the past years promised to deliver hitherto-unprecedented improvements in understanding massive amounts of data. Given the prevalence of such data sets in the clinical practice, ranging from time series of vital parameters of patients to irregularly-sampled information about drugs that are administered, this domain constitutes a prime target for machine learning research. The hope is that such clinical machine learning approaches are capable of (foremost) improving patient welfare, detecting novel biomarkers for complex syndromes such as sepsis or circulatory failure, and may assist doctors in their daily routine.

Clinical data, however, is also fraught with idiosyncratic challenges that need to be overcome in order for machine learning models to perform well. One of these challenges, for example, is that some measurements are sampled at irregular time intervals. This necessitates special choices for the models. Other hurdles include differences in measurement modalities—impeding the transfer of models between different hospital sites, for example—and differences in prevalence (for classification tasks), exacerbating model comparison.

In this track, we will bring together practitioners and researchers to showcase state-of-the-art machine learning models for the clinical practice. Particular emphasis will be placed on discussions about the use of machine learning for prospective studies. Which additional aspects (concerning ethics, legal discussions, and many more) have to be considered? What success stories are already out there? What can we learn from successful, ongoing, or failed implementations? We aim to provide a track with stimulating discussions about all of these aspects, culminating (ideally) in participants authoring a white paper detailing the future of this field.

Track / Schedule

Introduction

With Marcel Salathé

Opening remarks

With Damian Roqueiro

Validation in RL for Health: Including the Experts!

With Finale Doshi-Velez

Machine Learning for Personalized Medicine in Paediatrics

With Julia Vogt

Coffee Break

Ethics of big data and clinical ML

With Bernice Elger

Context is Everything: A Case Study on Hypotension Prediction

With Stephanie Hyland

Deep learning and the Future of Radiology

With Daniel Rueckert

Concluding remarks

With Damian Roqueiro

Lunch break

Opening remarks

With Christian Bock

Boosting Digital Pathology with Machine Learning

With Matteo Togninalli & Vanessa Schumacher

MIMIC-IV, a deidentified critical care database

With Alistair Johnson

Machine Learning for Personalised Mental Health

With Danielle Belgrave

Coffee Break

Computational pharmacogenomics in precision oncology

With Michael Menden

How AI should be implemented in clinical practice?

With Steve Jiang

Panel: Achieving clinical translation - Requirements, Challenges, Successes

With Tobias Gass, Steve Jiang, Assaf Gottlieb, Danielle Belgrave, Bastian Rieck & Julia Vogt

Concluding remarks

With Bastian Rieck

Virtual Apéro

Track / Speakers

Marcel Salathé

Professor, EPFL

Bastian Rieck

Senior Assistant, ETH Zurich

Matteo Togninalli

COO, Visium

Damian Roqueiro

Senior Researcher, ETH Zurich

Christian Bock

PhD Student, ETH Zurich

Daniel Rueckert

Professor, Imperial College London

Michael Menden

Junior Group Leader, Helmholtz Zentrum München

Stephanie Hyland

Senior Researcher, Microsoft Research

Steve Jiang

Professor, University of Texas Southwestern

Danielle Belgrave

Principal Research Manager, Microsoft Research

Julia Vogt

Professor, ETH Zurich

Tobias Gass

Manager Adaptive RT, Varian

Alistair Johnson

Scientist, SickKids

Assaf Gottlieb

Assistant Professor, UTHealth

Finale Doshi-Velez

Associate Professor, Harvard

Bernice Elger

Professor, Universität Basel

Vanessa Schumacher

Group Head – Tissue Biomarker and Digital Pathology, Roche

Track / Co-organizers

Bastian Rieck

Senior Assistant, ETH Zurich

Damian Roqueiro

Senior Researcher, ETH Zurich

Felix Hensel

Postdoctoral researcher, ETH Zurich

Juliane Klatt

Post-doctoral Researcher, ETH Zurich

Sarah Brüningk

Postdoctoral Researcher, ETH Zurich

Michael Moor

MD, PhD Student, ETH Zurich

Karsten Borgwardt

Professor, ETH Zurich

Christian Bock

PhD Student, ETH Zurich

Max Horn

PhD Student, ETH Zurich

AMLD EPFL 2021 / Tracks & talks

AI & Democracy

Robert West, Roy Gava, Victor Kristof, Steven Eichenberger, Alexandra Siegel, Lucas Leemann, Rayid Ghani, Sophie Achermann, Alexander Immer, Jacques Savoy, Oana Goga, Christine Choirat, Arianna Ornaghi, Irio Musskopf

10:00-18:00 January 25Online

AI & Food and Nutrition

Marcel Salathé, Fabio Mainardi, Tome Eftimov, Sharada Mohanty, Philippe Glénat, Timon Zimmermann, Mireille Moser, Ugo Gentile, Christoph Trattner, Enrico Zio, Yamine Bouzembrak, Christian Nils Schwab, Carrol Plummer, Patrizia Catellani, Matthias Graeber, Lorijn van Rooijen, Kristina Gligorić, Lydia Afman, Nourchene Ben Romdhane, Talia Salzmann, Thomas Chen, Gjorgjina Cenikj, Gorjan Popovski, Sola Shirai

09:00-17:00 March 01Online

Clinical Machine Learning

Marcel Salathé, Bastian Rieck, Matteo Togninalli, Damian Roqueiro, Christian Bock, Daniel Rueckert, Michael Menden, Stephanie Hyland, Steve Jiang, Danielle Belgrave, Julia Vogt, Tobias Gass, Alistair Johnson, Assaf Gottlieb, Finale Doshi-Velez, Bernice Elger, Vanessa Schumacher

09:10-18:00 March 18Online

AMLD / Global partners